Advertisement

Faster, More Accurate Diffusion Filtering for Fetal Ultrasound Volumes

  • Min-Jeong Kim
  • Hyun-Joo Yun
  • Myoung-Hee Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)

Abstract

3D ultrasound is a unique medical imaging modality for observing the growth and malformation of the fetus. But it is necessary to enhance its visual quality by filtering to reduce speckle noise and artifacts. Because imaging of fetuses takes place real time, these processes must also be fast. Previous methods have limited speed, quality, or are only applicable to 2D. We propose a new 3D filtering technique for 3D US fetus volume data which classifies the volume according to local coherence and applies different filters to the volume of interest and to the rest of the 3D image. The volume of interest, which contains the fetus, is determined automatically from key frames, and is processed using a nonlinear coherence enhancing diffusion (NCED) filter. Our method enhances 3D US fetus images more effectively than previous techniques, runs more quickly, and reduces the number of artifacts because it is a true extension to 3D.

Keywords

Structure Tensor Speckle Noise Projection Curve Local Coherence Fetus Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    Weickert, J., Zuiderveld, K.J., ter Haar Romeny, B.M., Niessen, W.J.: Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In: Proc. 1997 IEEE International Conference on Image Processing, vol. 3, pp. 396–399 (1997)Google Scholar
  3. 3.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  4. 4.
    Perona, P., Malik, J.: Scale Space and Edge Detection using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Weickert, J.: Multiscale Texture Enhancement. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 230–237. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Weickert, J.: Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision 31, 111–127 (1999)CrossRefGoogle Scholar
  7. 7.
    Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle Reducing Anisotropic Diffusion for 3D Ultrasound Images. Computerized Medical Imaging and Graphics 28, 461–470 (2004)CrossRefGoogle Scholar
  9. 9.
    Abd-Elmoniem, K.Z., Youssef, A.M., Kadah, Y.M.: Real-time Speckle Reduction and Coherence Enhancement in Ultrasound Imaging via Nonlinear Anisotropic Diffusion. IEEE Transactions of Biomedical Engineering 49(9), 997–1014 (2002)CrossRefGoogle Scholar
  10. 10.
    Nguyen, T.D., Kim, S.-H., Kim, N.C.: An Automatic Body ROI Determination for 3D Visualization of a Fetal Ultrasound Volume. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 145–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kühne, G.: Motion-based Segmentation and Classification of Video Objects., PhD Dissertation, Mannheim University (2002)Google Scholar
  12. 12.
    Jardim, S.V., Figueiredo, M.A.: Automatic Contour Estimation in Fetal Ultrasound Images. In: The IEEE International Conference in Image Processing, pp. 1065–1068 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min-Jeong Kim
    • 1
  • Hyun-Joo Yun
    • 2
  • Myoung-Hee Kim
    • 1
    • 3
  1. 1.Department of Computer Science and EngineeringEwha Womans UniversitySeoulKorea
  2. 2.Institute for Graphic Interfaces (IGI)SeoulKorea
  3. 3.Center for Computer Graphics and Virtual RealityEwha Womans UniversitySeoulKorea

Personalised recommendations