Skip to main content

The Class Imbalance Problem in TLC Image Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Abstract

The paper presents the methodology developed to solve the class imbalanced problem that occurs in the classification of Thin-Layer Chromatography (TLC) images. The proposed methodology is based on re-sampling, and consists in the undersampling of the majority class (normal class), while the minority classes, which contain Lysosomal Storage Disorders (LSD) samples, are oversampled with the generation of synthetic samples. For image classification two approaches are presented, one based on a hierarchical classifier and another uses a multiclassifier system, where both classifiers are trained and tested using balanced data sets. The results demonstrate a better performance of the multiclassifier system using the balanced sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kubat, M., Holte, R., Matwin, S.: Learning when Negative Examples Abound. In: European Conference on Machine Learning, pp. 146–153 (1997)

    Google Scholar 

  2. Lazarević, A., Srivastava, J., Kumar, V.: Data Mining for Analysis of Rare Events: A Case Study in Security. In: Financial and Medical Applications PAKDD 2004 (2004)

    Google Scholar 

  3. Skurichina, M., Raudys, S., Duin, R.P.W.: K-Nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training. IEEE Transactions on Neural Networks 11(2) (2000)

    Google Scholar 

  4. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: Special Issue on Learning from Imbalanced Data Sets. Sigkdd Explorations 6(1), 1–6 (2004)

    Article  Google Scholar 

  5. Japkowicz, N.: Class Imbalances: Are we focusing on the right issue? In: Workshop on Learning from Imbalanced Datasets II, ICML, Washington, DC (2003)

    Google Scholar 

  6. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS, vol. 2838, pp. 107–119. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Domingos, P.: MetaCost: a general method for making classifiers cost-sensitive. In: Conference on Knowledge Discovery in Data Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 155–164 (1999)

    Google Scholar 

  8. Fan, W., Stolfo, S., Zhang, J., Chan, P.: Adacost: Misclassication cost-sensitive boosting. In: Proceedings of Sixteenth International Conference on Machine Learning, pp. 983–990 (1999)

    Google Scholar 

  9. Tax, D.M.J.: One-class classification; Concept-learning in the absence of counter-examples, - PhD thesis Delft University of Technology ASCI Dissertation Series:65 - 1-190 (2001)

    Google Scholar 

  10. Ridder, D., Tax, D.M.J., Duin, R.P.W.: An experimental comparison of one-class classification methods In: Proc ASCI 1998, 4th Annual Conf. of the Advanced School for Computing and Imaging (Lommel, Belgium, June 9-11), ASCI, Delft, pp. 213–218 (1998)

    Google Scholar 

  11. Lazarevic, A., Ertoz, L., Ozgur, A., Srivastava, J., Kumar, V.: A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. In: Proceedings of Third SIAM Conference on Data Mining, San Francisco (2003)

    Google Scholar 

  12. Weiss, G.M.: Mining with Rarity: A Unifying Framework. Sigkdd Explorations 6(1), 7–19 (2004)

    Article  Google Scholar 

  13. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of International ACM Conference on Research and Development in Information Retrieval, pp. 3–12 (1994)

    Google Scholar 

  14. Visa, S., Ralescu, A.: Learning Imbalanced and Overlapping Classes Using Fuzzy Sets. In: Workshop on Learning from Imbalanced Datasets II, ICML, Washington DC (2003)

    Google Scholar 

  15. Sousa, A.V., Aguiar, R.L., Mendonça, A.M., Campilho, A.C.: Automatic Lane and Band Detection in Images of Thin Layer Chromatography. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 158–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Sousa, A.V., Mendonça, A.M., Campilho, A.C., Aguiar, R.L., Miranda, C.S.: Feature Extraction for Classification of Thin-Layer Chromatography Images. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 974–981. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Japkowicz, N.: Learning from Imbalanced Data Sets: A Comparison of Various Strategies. In: Proceedings of Learning from Imbalanced Data, pp. 10–15 (2000)

    Google Scholar 

  18. Kubat, M., Holte, R., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30, 195–215 (1998)

    Article  Google Scholar 

  19. Ha, T., Bunke, H.: Off-Line, Handwritten Numeral Recognition by Perturbation Method. Pattern Analysis and Machine Intelligence 19(5), 535–539 (1997)

    Article  Google Scholar 

  20. Lee, S.: Noisy replication in skewed binary classification. Computational Statistics & Data Analysis (2000)

    Google Scholar 

  21. Heijden, F., Robert, P.W.D., Ridder, D., Tax, D.M.J.: Classification. In: Parameter Estimation and State Estimation. Wiley, Chichester (2004)

    Chapter  Google Scholar 

  22. Demant, C., Streicher-Abel, B., Waszkewitz, P.: Industrial Image Processing. Springer, Heidelberg (1999)

    Google Scholar 

  23. Chawla, N.V., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-Sampling Technique. Jounal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sousa, A.V., Mendonça, A.M., Campilho, A. (2006). The Class Imbalance Problem in TLC Image Classification. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_46

Download citation

  • DOI: https://doi.org/10.1007/11867661_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics