Skip to main content

Geometric Invariant Curve and Surface Normalization

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Included in the following conference series:

  • 1453 Accesses

Abstract

In this work, a geometric invariant curve and surface normalization method is presented. Translation, scale and shear are normalized by Principal Component Analysis (PCA) whitening. Independent Component Analysis (ICA) and the third order moments are then employed for rotation and reflection normalization. By applying this normalization, curves and surfaces that are related by geometric transformations (affine or rigid) can be transformed into a canonical representation. Proposed technique is verified with several 2D and 3D object matching and recognition experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, C.S., Hwang, C.L.: New Forms of Shape Invariants From Elliptic Fourier Descriptors. Pattern Recognition 20(5), 535–545 (1987)

    Article  Google Scholar 

  2. Persoon, E., Fu, K.S.: Shape Discrimination Using Fourier Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(3), 388–397 (1986)

    Article  Google Scholar 

  3. Taubin, G., Cuikerman, F., Sullivan, S., Ponce, J., Kriegman, D.J.: Parameterized families of polynomials for bounded algebraic curve and surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(3), 287–303 (1994)

    Article  MATH  Google Scholar 

  4. Cohen, F.S., Huang, Z.H., Yang, Z.: Invariant matching and identification of curves using B-spline curve representation. IEEE Transactions on Image Processing 4, 1–10 (1995)

    Article  Google Scholar 

  5. Huang, Z.H., Cohen, F.S.: Affine invariant B-spline moments for curve matching. Image Processing 5(10), 1473–1480 (1996)

    Article  Google Scholar 

  6. Rui, Y., She, A., Huang, T.S.: A modified Fourier descriptor for shape matching in MARS. In: Chang, S.K. (ed.) Image Databases and Multimedia Search. Series of software engineering and knowledge engineering, vol. 8, pp. 165–180. World Scientific, Singapore

    Google Scholar 

  7. Werman, M., Weinshall, D.: Similarity and affine Invariant Distances Between 2D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 810–814 (1995)

    Article  Google Scholar 

  8. Wolovich, W.A., Unel, M.: The Determination of Implicit Polynomial Canonical Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(10), 1080–1090 (1998)

    Article  Google Scholar 

  9. Faugeras, O.R., Hebert, M.: The Representation, Recognition, and Locating of 3-D Objects. The International Journal of Robotics Research 5(3) (1986)

    Google Scholar 

  10. Arbter, K.: Affine-Invariant Fourier Descriptors. In: From Pixels to Features. Elseiver Science, Amsterdam, The Netherlands (1989)

    Google Scholar 

  11. Shen, D., Ip, H.: Generalized Affine Invariant Image Normalization. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 431–440 (1997)

    Article  Google Scholar 

  12. Avritris, Y., Xirouhakis, Y., Kollias, S.: Affine-Invariant Curve Normalization for Object Shape Representation, Classification and Retrieval. Machine Vision and Applications 13(2), 80–94 (2001)

    Article  Google Scholar 

  13. Faber, T., Stokely, E.: Orientation of 3-D structures in medical images. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 626–634 (1988)

    Article  Google Scholar 

  14. Cyganski, D., Orr, J.: Applications of tensor theory to object recognition and orientation determination. IEEE Trans. on Pattern Analysis and Machine Intelligence 7(6), 662–674 (1985)

    Article  Google Scholar 

  15. Haralick, R., Joo, H., Lee, C., Zhuang, X., Vaidya, V., Kim, M.: Pose estimation from corresponding point data. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 1426–1446 (1989)

    Google Scholar 

  16. Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  17. Zhang, Z.: Iterative Point Matching for Registration of Free-Form Curves and Surfaces. International J. Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  18. Ferrie, F.P., Levine, M.D.: Integrating Information from Multiple Views. In: Proc. IEEE Workshop on Computer Vision, Miami Beach, Fla., pp. 117–122 (1987)

    Google Scholar 

  19. Potmesil, M.: Generating Models for Solid Objects by Matching 3D Surface Segments. In: Proc. Int. Joint Conf. Artificial Intelligence, Karlsruhe, Germany, pp. 1,089–1,093 (1983)

    Google Scholar 

  20. Blais, G., Levine, M.D.: Registering Multiview Range Data to Create 3D Computer Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(8), 820–824 (1995)

    Article  Google Scholar 

  21. Papaioannou, G., Karabassi, E., Theoharis, T.: Reconstruction of Three-Dimensional Objects through Matching of Their Parts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(1), 114–124 (2002)

    Article  Google Scholar 

  22. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)

    MATH  Google Scholar 

  23. Lee, T.W.: Independent Component Analysis- Theory and Applications. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  24. Hyvrinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. On Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  25. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Putt. Recogn. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  26. Yi, X., Camps, O.C.: Robust occluding contour detection using the Hausdorff distance. In: Proc. of IEEE Conf. on Vision and Pattern Recognition, CVPR 1997, San Juan, PR, pp. 962–967 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sener, S., Unel, M. (2006). Geometric Invariant Curve and Surface Normalization. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_40

Download citation

  • DOI: https://doi.org/10.1007/11867661_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics