On a Polynomial Vector Field Model for Shape Representation

  • Mickael Chekroun
  • Jérôme Darbon
  • Igor Ciril
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


In this paper we propose an efficient algorithm to perform a polynomial approximation of the vector field derived from the usual distance mapping method. The main ingredients consist of minimizing a quadratic functional and transforming this problem in an appropriate setting for implementation. With this approach, we reduce the problem of obtaining an approximating polynomial vector field to the resolution of a not expansive linear algebraic system. By this procedure, we obtain an analytical shape representation that relies only on some coefficients. Fidelity and numerical efficiency of our approach are presented on illustrative examples.


Great Common Divisor Moment Invariant Shape Representation Polynomial Vector Polynomial Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballard, D.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1978)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Queval, R., Maître, H.: Shape interpolation by fourier descriptors with application to animation graphics. Signal Processing 4, 53–58 (1982)CrossRefGoogle Scholar
  3. 3.
    Chekroun, M., Darbon, J., Ciril, I.: On a polynomial vector field model for shape representation: mathematical foundation (in preparation)Google Scholar
  4. 4.
    Freeman, H.: On the encoding of arbitrary geometric configuration. IEEE Transactions on Electronic Computing 10, 260–268 (1961)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Freeman, H.: Computer processing of lin drawing images. ACM Computer Survey 6, 57–97 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    GNU Multiple Precision library,
  7. 7.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory IT-8(2), 179–187 (1962)Google Scholar
  8. 8.
    Kirwan, F.: Complex Algebraic Curves. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  9. 9.
    Lowrance, R., Wagner, R.: An extension of the string to string correction problem. J. Ass. Comp. Mach. 22(2), 177–183 (1975)MATHMathSciNetGoogle Scholar
  10. 10.
    Mussa-Ivaldi, F.A.: From basis functions to basis fields: vector field approximation from sparse data. Biol. Cybernetics 67, 479–489 (1992)MATHCrossRefGoogle Scholar
  11. 11.
    Osher, S., Sethian, J.: Front propagating with curvature dependent speed. Journal of Computational Physics 79, 12–49 (1988)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  13. 13.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, New York (1998)MATHCrossRefGoogle Scholar
  14. 14.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. In: PWS (1999)Google Scholar
  15. 15.
    Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing - Part I. IEEE Transations on Signal Processing 41(2), 821–833 (1993)MATHCrossRefGoogle Scholar
  16. 16.
    Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing 7(3) (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mickael Chekroun
    • 1
  • Jérôme Darbon
    • 2
  • Igor Ciril
    • 1
  1. 1.Institut Polytechnique des Sciences AvancéesLe Kremlin BicêtreFrance
  2. 2.EPITA Research and Development Laboratory (LRDE)Le Kremlin-BicêtreFrance

Personalised recommendations