Advertisement

Object Categorization Using Kernels Combining Graphs and Histograms of Gradients

  • F. Suard
  • A. Rakotomamonjy
  • A. Bensrhair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)

Abstract

This paper presents a method for object categorization. This problem is difficult and can be solved by combining different information sources such as shape or appearance. In this paper, we aim at performing object recognition by mixing kernels obtained from different cues. Our method is based on two complementary descriptions of an object. First, we describe its shape thanks to labeled graphs. This graph is obtained from morphological skeleton, extracted from the binary mask of the object image. The second description uses histograms of oriented gradients which aim at capturing objects appearance. The histogram descriptor is obtained by computing local histograms over the complete image of the object. These two descriptions are combined using a kernel product. Our approach has been validated on the ETH80 database which is composed of 3280 images gathered in 8 classes. The results we achieved show that this method can be very efficient.

Keywords

Object Categorization Label Graph Binary Mask Multiple Kernel Learning Oriented Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, p. 6. ACM Press, New York (2004)CrossRefGoogle Scholar
  2. 2.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) 5th Annual ACM Workshop on COLT, Pittsburgh, PA, pp. 144–152. ACM Press, New York (1992)Google Scholar
  3. 3.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett. 19(3-4), 255–259 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    Beucher, S., Lantuejoul, C.: On the use of the geodesic metric in image analysis. Journal of miscrocopy 121(1), 39–49 (1981)Google Scholar
  5. 5.
    Cristianini, N., Shawe-Taylor, J.: Introduction to Support Vector Machines. Cambridge Univeristy Press, Cambridge (2000)Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer Vision and Pattern Recognition, June 2005, vol. 2, pp. 886–893 (INRIA Rhone-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334) (2005)Google Scholar
  7. 7.
    Eichhorn, J., Chapelle, O.: Object categorization with svm: kernels for local features. Technical report, MPIK (July 2004)Google Scholar
  8. 8.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)CrossRefGoogle Scholar
  9. 9.
    Darrell, T., Grauman, K.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proceedings of the IEEE International Conference on Computer Vision, Beijing, China (2005)Google Scholar
  10. 10.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the Twentieh International Conference on Machine Learning (2003)Google Scholar
  11. 11.
    Borgwardt, K.M., Ong, C.S., Schnauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.: Protein function prediction via graph kernels. Intelligent Systems in Molecular Biology (2005)Google Scholar
  12. 12.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)CrossRefGoogle Scholar
  15. 15.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based indexing of image databases (1998)Google Scholar
  16. 16.
    Shashua, A., Gdalyahu, Y., Hayon, G.: Pedestrian detection for driving assistance systems: Single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium (2004)Google Scholar
  17. 17.
    Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)MATHGoogle Scholar
  18. 18.
    Demirci, M.F., Shokoufandeh, A., Dickinson, S.J., Keselman, Y., Bretzner, L.: Many-to-many feature matching using spherical coding of directed graphs. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 322–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. Suard
    • 1
  • A. Rakotomamonjy
    • 1
  • A. Bensrhair
    • 1
  1. 1.LITIS, PSI, INSA de RouenSaint Etienne du RouvrayFrance

Personalised recommendations