Using Local Integral Invariants for Object Recognition in Complex Scenes

  • Alaa Halawani
  • Hashem Tamimi
  • Hans Burkhardt
  • Andreas Zell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4142)


This paper investigates the use of local descriptors that are based on integral invariants for the purpose of object recognition in cluttered scenes. Integral invariants capture the local structure of the neighborhood around the points where they are computed. This makes them very well suited for constructing highly-discriminative local descriptors. The features are by definition invariant to Euclidean motion. We show how to extend the local features to be scale invariant. Regarding the robustness to intensity changes, two types of kernels used for extracting the feature vectors are investigated. The effect of the feature vector dimensionality and the performance in the presence of noise are also examined. Promising results are obtained using a dataset that contains instances of objects that are viewed in difficult situations that include clutter and occlusion.


Feature Vector Object Recognition Recognition Rate Local Binary Pattern Interest Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)CrossRefGoogle Scholar
  2. 2.
    Schiele, B., Crowley, J.L.: Object Recognition Using Multidimensional Receptive Field Histograms. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 610–619. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 530–535 (1997)CrossRefGoogle Scholar
  4. 4.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proceedings of The Fourth Alvey Vision Conference, Manchester, pp. 147–151 (1988)Google Scholar
  5. 5.
    Gouet, V., Boujemaa, N.: Object-based Queries using Color Points of Interest. In: IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL 2001), Kauai, Hawaii, USA, pp. 30–36 (2001)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Schulz-Mirbach, H.: Invariant Features for Gray Scale Images. In: Sagerer, G., Posch, S., Kummert, F. (eds.) 17th DAGM - Symposium “Mustererkennung”, Bielefeld, pp. 1–14. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Schael, M.: Invariant Grey Scale Features for Texture Analysis Based on Group Averaging with Relational Kernel Functions. Technical Report 1/01, Albert-Ludwigs-Universität, Freiburg, Institut für Informatik (2001)Google Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Siggelkow, S.: Feature Historgrams for Content-Based Image Retrieval. PhD thesis, Albert-Ludwigs-Universität, Freiburg (2002)Google Scholar
  11. 11.
    Freidman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software 3, 209–226 (1977)CrossRefGoogle Scholar
  12. 12.
    Biber, P., Straßer, W.: Solving the Correspondence Problem by Finding Unique Features. In: 16th International Conference on Vision Interface (2003)Google Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. In: International Conference on Computer Vision & Pattern Recognition, vol. 2, pp. 257–263 (2003)Google Scholar
  14. 14.
    Zhang, Z., Deriche, R., Faugeras, O.D., Luong, Q.T.: A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry. Artificial Intelligence 78, 87–119 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alaa Halawani
    • 1
  • Hashem Tamimi
    • 2
  • Hans Burkhardt
    • 1
  • Andreas Zell
    • 2
  1. 1.Chair of Pattern Recognition and Image ProcessingUniversity of FreiburgFreiburgGermany
  2. 2.Computer Science Dept.University of TübingenTübingenGermany

Personalised recommendations