A Robust Particle Filter-Based Face Tracker Using Combination of Color and Geometric Information

  • Bogdan Raducanu
  • Y. Jordi Vitrià
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


Particle filtering is one of the most successful approaches for visual tracking. However, so far, most particle-filter trackers are limited to a single cue. This can be a serious limitation, since it can reduce the tracker’s robustness. In the current work, we present a multiple cue integration approach applied for face tracking, based on color and geometric properties. We tested it over several video sequences and we show it is very robust against changes in face appearance, scale and pose. Moreover, our technique is proposed as a contextual information for human presence detection.


Video Sequence Particle Filter Face Detector Color Histogram Visual Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aherne, F., Thacker, N., Rockett, P.: The Bhattacharya Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetyka 32, 1–7 (1997)Google Scholar
  2. 2.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–188 (2002)CrossRefGoogle Scholar
  3. 3.
    Bradsky, G.R.: Computer Vision Face Tracking for Use in a Perceptual User Interface. Technical Report 2001.2, Microcomputer Research Lab, Intel Corporation (2001)Google Scholar
  4. 4.
    Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing Journal 5, 4–7 (2001)CrossRefGoogle Scholar
  5. 5.
    Doucet, A., de Freitas, J.F.D., Gordons, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)MATHGoogle Scholar
  6. 6.
    Gatica-Perez, D., Lathoud, G., McCowan, I., Odobez, J.-M., Moore, D.: Audio-Visual Speaker Tracking with Importance Particle Filters. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Barcelona, Spain (2003)Google Scholar
  7. 7.
    Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision 29, 5–28 (1998)CrossRefGoogle Scholar
  8. 8.
    Jazwinsky, A.M.: Stochastic Processes and Filtering Theory. Academic Press, London (1970)Google Scholar
  9. 9.
    Julier, S.J., Uhlmann, J.K.: A New Extension of the Kalman Filter to Nonlinear Systems. In: Proceedings of SPIE on Signal Processing, Sensor Fusion and Target Recognition VI, vol. 3068, pp. 182–193 (1997)Google Scholar
  10. 10.
    Maybeck, P.: Stochastic Models, Estimation and Control (I). Academic Press, London (1979)Google Scholar
  11. 11.
    McKenna, S., Gong, S.: Tracking Faces. In: Proceedings of 2nd International Conference on Automatic Face and Gesture Recognition (AFGR), Vermont, USA, pp. 271–276 (1996)Google Scholar
  12. 12.
    Nummiaro, K., Meier, E.K., Gool, L.v.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 21, 99–110 (2003)CrossRefGoogle Scholar
  13. 13.
    Pantrigo, J.J., Montemayor, A.S., Cabido, R.: Scatter Search Particle Filter for 2D Real-Time Hands and Face Tracking. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 953–960. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Peihua, L., Chaumette, F.: Image Cues Fusion for Contour Tracking Based on Particle Filter. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 99–107. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Pérez, P., Hue, C., Vermaak, J., Cangnet, M.: Color-based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Pérez, P., Vermaak, J., Blake, A.: Data Fusion for Visual Tracking with Particles. Proceedings of IEEE 92, 495–513 (2004)CrossRefGoogle Scholar
  17. 17.
    Shan, C., Wei, Y., Tan, Y.T., Ojardias, F.: Real Time Hand Tracking by Combining Particle Filtering and Mean Shift. In: Proceedings of the 6th Int. Conf. on Automatic Face and Gesture Recognition (AFGR), Seoul, Korea (2004)Google Scholar
  18. 18.
    Spengler, M., Schiele, N.: Towards Robust Multi-Cue Integration for Visual Tracking. In: Schiele, B., Sagerer, G. (eds.) ICVS 2001. LNCS, vol. 2095, pp. 93–106. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Swain, M., Ballard, D.: Color Indexing. International Journal of Computer Vision 7, 11–32 (1991)CrossRefGoogle Scholar
  20. 20.
    Thrun, S.: Particle Filters in Robotics. In: Proceedings of Uncertainty in AI, pp. N/A (2002)Google Scholar
  21. 21.
    Triesch, J., Malsburg, C.v.d.: Democratic Integration: Self-Organized Integration of Adaptive Cues. Neural Computation 13, 2049–2074 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  23. 23.
    Weiser, M.: The Computer for the Twenty-First Century. Scientific American, 94–10 (1991)Google Scholar
  24. 24.
    Welch, G., Bishop, G.: An Introduction to Kalman filter. Technical Report TR95-041, Dept. of Comp. Science, Univ. of North Carolina (2002)Google Scholar
  25. 25.
    Williams, O., Blake, A., Cipolla, R.: Sparse Bayesian Learning for Efficient Visual Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1292–1304 (2005)CrossRefGoogle Scholar
  26. 26.
    Zajdel, W., Zivkovic, Z., Kröse, B.J.A.: Keeping Track of Humans: Have I Seen This Person Before? In: Proceedings of International Conference on Robotics and Automation (ICRA), Barcelona, Spain, pp. 2093–2098 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bogdan Raducanu
    • 1
  • Y. Jordi Vitrià
    • 1
    • 2
  1. 1.Centre de Visió per ComputadorEdifici O – Campus UAB 
  2. 2.Departament de Cienciès de la ComputacióUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations