Advertisement

An Iterative Multiresolution Scheme for SFM

  • Carme Julià
  • Angel Sappa
  • Felipe Lumbreras
  • Joan Serrat
  • Antonio López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)

Abstract

Several factorization techniques have been proposed for tackling the Structure from Motion problem. Most of them provide a good solution, while the amount of missing and noisy data is within an acceptable ratio. Focussing on this problem, we propose to use an incremenal multiresolution scheme, with classical factorization techniques. Information recovered following a coarse-to-fine strategy is used for both, filling in the missing entries of the input matrix and denoising original data. An evaluation study, by using two different factorization techniques–the Alternation and the Damped Newton–is presented for both synthetic data and real video sequences.

Keywords

Feature Point Singular Value Decomposition Factorization Technique Input Matrix Structure From Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golub, G.H., Van Loan, C.F. (eds.): Matrix Computations. The Johns Hopkins Univ. Press, Baltimore (1989)MATHGoogle Scholar
  2. 2.
    Tomasi, C., Kanade, T.: Shape and motion from image streams: a factorization method. Full report on the orthographic case (1992)Google Scholar
  3. 3.
    Jacobs, D.: Linear fitting with missing data for structure-from-motion. In: Computer vision and image understanding, CVIU, pp. 7–81 (2001)Google Scholar
  4. 4.
    Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brandt, S.: Closed-form solutions for affine reconstruction under missing data. In: Proceedings Statistical Methods for Video Processing Workshop, in conjunction with ECCV, pp. 109–114 (2002)Google Scholar
  6. 6.
    Chen, P., Suter, D.: Recovering the missing components in a large noisy low-rank matrix: Application to sfm. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2004)Google Scholar
  7. 7.
    Buchanan, A., Fitzgibbon, A.: Damped newton algorithms for matrix factorization with missing data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 316–322 (2005)Google Scholar
  8. 8.
    Julià, C., Sappa, A., Lumbreras, F., Serrat, J., López, A.: Factorization with missing and noisy data. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 555–562. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Ma, Y., Soatto, J., Kosecká, J., Sastry, S.: An invitation to 3d vision: From images to geometric models. Springer, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carme Julià
    • 1
  • Angel Sappa
    • 1
  • Felipe Lumbreras
    • 1
  • Joan Serrat
    • 1
  • Antonio López
    • 1
  1. 1.Computer Vision Center and Computer Science DepartmentUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations