Optic Flow from Multi-scale Dynamic Anchor Point Attributes

  • B. J. Janssen
  • L. M. J. Florack
  • R. Duits
  • B. M. ter Haar Romeny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


Optic flow describes the apparent motion that is present in an image sequence. We show the feasibility of obtaining optic flow from dynamic properties of a sparse set of multi-scale anchor points. Singular points of a Gaussian scale space image are identified as feasible anchor point candidates and analytical expressions describing their dynamic properties are presented. Advantages of approaching the optic flow estimation problem using these anchor points are that (i) in these points the notorious aperture problem does not manifest itself, (ii) it combines the strengths of variational and multi-scale methods, (iii) optic flow definition becomes independent of image resolution, (iv) computations of the components of the optic flow field are decoupled and that (v) the feature set inducing the optic flow field is very sparse (typically \(<{{1}\over{2}}\%\) of the number of pixels in a frame). A dense optic flow vector field is obtained through projection into a Sobolev space defined by and consistent with the dynamic constraints in the anchor points. As opposed to classical optic flow estimation schemes the proposed method accounts for an explicit scale component of the vector field, which encodes some dynamic differential flow property.


Singular Point Image Sequence Optic Flow Anchor Point Scale Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  2. 2.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Nagel, H.H.: Displacement vectors derived from 2nd order intensity variations in image sequences. Computer Vision, Graphics and Image Processing 21, 85–117 (1983)CrossRefGoogle Scholar
  4. 4.
    Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biological Cybernetics 60, 79–87 (1988)CrossRefGoogle Scholar
  5. 5.
    Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)CrossRefGoogle Scholar
  6. 6.
    Singh, A.: Optic Flow Computation: a Unified Perspective. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  7. 7.
    Heeger, D.: Optical flow using spatio-temporal filters. International Journal of Computer Vision 1, 279–302 (1988)CrossRefGoogle Scholar
  8. 8.
    Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5, 77–104 (1990)CrossRefGoogle Scholar
  9. 9.
    Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 129–139 (1986)CrossRefGoogle Scholar
  10. 10.
    Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. International Journal of Computer Vision 38, 129–152 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Florack, L.M.J., Niessen, W.J., Nielsen, M.: The intrinsic structure of optic flow incorporating measurement duality. International Journal of Computer Vision 27, 263–286 (1998)CrossRefGoogle Scholar
  12. 12.
    Suinesiaputra, A., Florack, L.M.J., Westenberg, J.J.M., ter Haar Romeny, B.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Optic flow computation from cardiac MR tagging using a multiscale differential method—a comparative study with velocity-encoded mri, pp. 483–490Google Scholar
  13. 13.
    Werkhoven, P., Toet, A., Koenderink, J.J.: Displacement estimates through adaptive affinities. IEEE Trans. Pattern Anal. Mach. Intell. 12, 658–663 (1990)CrossRefGoogle Scholar
  14. 14.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  15. 15.
    Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real time. IEEE Transactions on Image Progressing 14, 608–615 (2005)CrossRefGoogle Scholar
  16. 16.
    Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Transactions on Signal Processing 42, 2915–2925 (1994)CrossRefGoogle Scholar
  17. 17.
    Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52, 73–95 (2003)CrossRefGoogle Scholar
  18. 18.
    Nielsen, M., Lillholm, M.: What Do Features Tell about Images? In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 39–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Janssen, B., Kanters, F., Duits, R., Florack, L.: A linear image reconstruction framework based on Sobolev type inner products. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 85–96. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Haar Romeny, B.M.t.: Front-End Vision and multiscale image analysis. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  21. 21.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  22. 22.
    Florack, L.M.J.: Image Structure. Computational Imaging and Vision Series, vol. 10. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  23. 23.
    Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115, 368–401 (1995)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Gilmore, R.: Catastrophe Theory for Scientists and Engineers. Dover Publications, Inc., New York (1993); Originally published by John Wiley & Sons, New York (1981)Google Scholar
  26. 26.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1965); Originally published by the National Bureau of Standards (1964)Google Scholar
  27. 27.
    Wolfram, S.: Mathematica: A System for doing Mathematics by Computer, 2nd edn. Addison-Wesley, Reading (1991)Google Scholar
  28. 28.
  29. 29.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)CrossRefGoogle Scholar
  30. 30.
    Koenderink, J.J.: A hitherto unnoticed singularity of scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 1222–1224 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. J. Janssen
    • 1
  • L. M. J. Florack
    • 1
  • R. Duits
    • 1
  • B. M. ter Haar Romeny
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations