Fast Motion Estimation Using Spatio Temporal Filtering

  • V. Bruni
  • D. De Canditiis
  • D. Vitulano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


In this paper a fast algorithm for motion estimation is presented. It models the temporal averaging of a group of frames as the spatial filtering of the reference one with a suitable Dirac comb function. This equality allows us to estimate a constant affine motion by comparing the phases of the FFT. Experimental results show that the proposed algorithm outperforms the available fast motion estimation techniques in terms of both quality and computational effort.


Motion Vector Motion Estimation Video Technology Phase Correlation Reference Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, Y.Q., Sun, H.: Image and Video Compression for Multimedia Engineering. CRC Press, New York (2000)Google Scholar
  2. 2.
    Netravali, A.N., Robbins, J.D.: Motion-Compensated Television Coding: Part I. Bell Syst. Tech. J. 58(3), 631–670 (1979)Google Scholar
  3. 3.
    Robbins, J.D., Netravali, A.N.: Recursive Motion Compensation: A Review. In: Huang, T.S. (ed.) Image Sequence Processing and Dynamic Scene Analysis, pp. 73–103. Springer, Berlin (1983)Google Scholar
  4. 4.
    Le Besnerais, G., Champagnat, F.: Dense Optical Flow by Iterative Local Window Registration. In: Proc. of IEEE International Conference on Image Processing, pp. 137–140 (2005)Google Scholar
  5. 5.
    Ye, M., Haralick, R.M., Shapiro, L.G.: Estimating Piecewise - Smooth Optical Flow with Global Matching and Graduated Optimization. IEEE PAMI 25(12), 1625–1630 (2003)Google Scholar
  6. 6.
    Jou, J.M., Chen, P.-Y., Sun, J.-M.: The Gray Prediction Search Algorithm for Block Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 9(6), 843–848 (1999)CrossRefGoogle Scholar
  7. 7.
    Nam, K.N., Kim, J.-S., Park, R.-H., Shim, Y.S.: A Fast Hierarchical Motion Vector Estimation Algorithm using Mean Pyramid. IEEE Trans. Circuits Syst. Video Technology 5(4), 344–351 (1995)CrossRefGoogle Scholar
  8. 8.
    Zhu, S., Ma, K.-K.: A new Diamond Search Algorithm for Fast Block Matching Estimation. IEEE Trans. Circuits Syst. Video Technology 9(2), 287–290 (2000)MathSciNetGoogle Scholar
  9. 9.
    Kuo, C.J., Yeh, C.H., Odeh, S.F.: Polynomial Search Algorithm for Motion Estimation. IEEE Trans. Circuits Syst. Video Technology 10(5), 813–818 (2000)CrossRefGoogle Scholar
  10. 10.
    Koc, U.-V., Liu, K.J.R.: DCT-Based Motion Estimation. IEEE Trans on Image Processing 7(7) (July 1998)Google Scholar
  11. 11.
    Kughlin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proceedings of IEEE Int. Conf. Systems, Man. and Cybernetics, pp. 163–165 (September 1975)Google Scholar
  12. 12.
    Li, M., Biswas, M., Kumar, S., Nguyen, T.: DCT- based phase correlation motion estimation. In: Proceedings of IEEE Int. Conf. on Image Processing, pp. 445–448 (2004)Google Scholar
  13. 13.
    Biswas, M., Kumar, S., Nguyen, T.: Efficient phase correlation motion estimation using approximate normalization. In: Proceedings of IEEE Int. Conf. on Signals, Systems and Computers, vol. 2, pp. 1727–1730 (November 2004)Google Scholar
  14. 14.
    Chou, Y.M., Hang, H.M.: A New Motion Estimation Method using Frequency Components. Journal of Visual Communication and Image Representation 8(1), 83–96 (1997)CrossRefGoogle Scholar
  15. 15.
    Erturk, A., Erturk, S.: Two Bit Transform for Binary Block Estimations. Transactions on Circuits and Systems for Video Technology 15(7) (July 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. Bruni
    • 1
  • D. De Canditiis
    • 1
  • D. Vitulano
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo ”M. Picone” – C.N.R.RomeItaly

Personalised recommendations