Background Updating with the Use of Intrinsic Curves

  • Joaquín Salas
  • Pedro Martínez
  • Jordi González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


A primary tool to extract information about moving objects is background subtraction. In this technique, the difference between a model of what is static, or background, and the current image of the scene gives information about what is in the prime plane or foreground. This study focus on the pixelwise updating mechanism of the background model throughout the analysis of the images provided by a fixed camera. The concept of intrinsic curves, early introduced in the field of stereovision, is extrapolated to the problem of detecting the moving boundaries. We use a mixture of Gaussians to register information about the recent history of the pixel dynamics. Our method improves this model in two ways. Firstly, it reduces the chances of feeding the mixture of Gaussians with foreground pixels. Secondly, it takes into account not just the scalar pixel value but a richer description of the pixel’s dynamics that carries information about the interpixel variation. Ample experimental results in a wide range of environments, including indoors, outdoors, for a different set of illumination conditions both natural and artificial are shown.


Intelligent Transportation System Foreground Object Stability Zone Foreground Pixel Intrinsic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shao-Yi, C., Shyh-Yih, M., Liang-Gee, C.: Efficient Moving Object Segmentation Algorithm using Background Registration Technique. IEEE Transactions on Circuits and Systems for Video Technology 12(7), 577–586 (2002)CrossRefGoogle Scholar
  2. 2.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Transactions on PAMI 25(10), 1337–1342 (2003)Google Scholar
  3. 3.
    Ferryman, J.: Performance Evaluation of Tracking and Surveillance On-Line Evaluation Service (February 2006),
  4. 4.
    Giaccone, P.R., Tsaptsinos, D., Jones, G.A.: Foreground-Background Segmentation by Cellular Neural Networks. In: ICPR, vol. 2, pp. 438–441 (2000)Google Scholar
  5. 5.
    Gutchess, D., Trajkovics, M., Cohen-Solal, E., Lyons, D., Jain, A.K.: A Background Model Initialization Algorithm for Video Surveillance. In: ICCV, vol. 1, pp. 733–740 (2001)Google Scholar
  6. 6.
    Han, H., Wang, Z., Liu, J., Li, Z., Li, B., Han, Z.: Adaptive Background Modeling with Shadow Suppression. In: Proceedings of IEEE Intelligent Transportation Systems, vol. 1, pp. 720–724 (2003)Google Scholar
  7. 7.
    He, Y., Wang, H., Zhang, B.: Updating in Illumination-Variant Scenes. In: Proceedings IEEE Intelligent Transportation Systems, pp. 515–519 (2003)Google Scholar
  8. 8.
    Horprasert, T., Harwood, D., Davis, L.S.: A Robust Background Subtraction and Shadow Detection. In: Proceedings of the Fourth Asian Conference on Computer Vision (2000)Google Scholar
  9. 9.
    Huang, Q., Dom, B., Megiddo, N., Niblack, W.: Segmenting and Representing Background in Color Images. In: ICPR, vol. 3, pp. 13–17 (1996)Google Scholar
  10. 10.
    Kaup, A., Aach, T.: Efficient Prediction of Uncovered Background in Interframe Coding using Spatial Extrapolation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 501–504 (1994)Google Scholar
  11. 11.
    Kumar, P., Ranganath, S., Huang, W.: Queue Based Fast Background Modelling and Fast Hysteresis Thresholding for Better Foreground Segmentation. In: Proceedings of the 2003 Joint Conference of the Fourth International Conference on Multimedia, vol. 2, pp. 743–747 (2003)Google Scholar
  12. 12.
    Horng-Horng, L., Tyng-Luh, L., Jen-Hui, C.: A Probabilistic SVM Approach for Background Scene Initialization. In: ICIP, vol. 3, pp. 893–896 (2002)Google Scholar
  13. 13.
    Matthews, K.E., Namazi, N.M.: A Bayes Decision Test for Detecting Uncovered-Background and Moving Pixels in Image Sequences. IEEE Transactions on IP 7(5), 720–728 (1998)Google Scholar
  14. 14.
    Nolan, J.P.: Stable Distributions (February 2006),
  15. 15.
    Schoonees, J.A., Power, P.W.: Understanding Background Mixture Models for Foreground Segmentation. In: Proceedings Image and Vision Computing, New Zealand, p. 267 (2002)Google Scholar
  16. 16.
    Piccardi, M.: Background Subtraction Techniques: A Review. In: IEEE ICSMC, vol. 4, pp. 3099–3104 (2004)Google Scholar
  17. 17.
    Pless, R., Larson, J., Siebers, S., Westover, B.: Evaluation of Local Models of Dynamic Backgrounds. In: CVPR, pp. 73–78 (2003)Google Scholar
  18. 18.
    Qian, R.J., Sezan, M.I.: Video Background Replacement without a Blue Screen. In: ICIP, pp. 143–146 (1999)Google Scholar
  19. 19.
    Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-Time Tracking. In: CVPR, vol. 2, pp. 246–252 (1999)Google Scholar
  20. 20.
    Jen-Chao, T., Kai-Tai, S.: Background Segmentation and its Application to Traffic Monitoring using Modified Histogram. In: 2004 IEEE International Conference on Networking, Sensing and Control, vol. 1, pp. 13–18 (2004)Google Scholar
  21. 21.
    Tomasi, C., Manduchi, R.: Stereo Matching as a Nearest-Neighbor Problem. IEEE Transactions on PAMI 20(3), 333–340 (1998)Google Scholar
  22. 22.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: ICCV, vol. 1, pp. 255–261 (1999)Google Scholar
  23. 23.
    Weisstein, E.W.: Diffeomorphism. From MathWorld–A Wolfram Web Resource (September 2005),
  24. 24.
    Zhang, Y., Shi, P., Jones, E.G., Zhu, Q.: Robust Background Image Generation and Vehicle 3D Detection and Tracking. In: IEEE Conference on Intelligent Transportation Systems, pp. 12–16 (2004)Google Scholar
  25. 25.
    Zhou, Y., Tao, H.: A Background Layer Model for Object Tracking through Occlusion. In: ICCV, vol. 2, pp. 1079–1085 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joaquín Salas
    • 1
    • 2
  • Pedro Martínez
    • 1
  • Jordi González
    • 3
  1. 1.CICATA Querétaro-IPN 
  2. 2.CVC 
  3. 3.UPC-CSIC 

Personalised recommendations