IntelliSearch: Intelligent Search for Images and Text on the Web

  • Epimenides Voutsakis
  • Euripides G. M. Petrakis
  • Evangelos Milios
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


IntelliSearch is a complete and fully automated information retrieval system for the Web. It supports fast and accurate responses to queries addressing text and images in Web pages by incorporating state-of-the-art text and Web link information indexing and rertieval methods in conjunction with efficient ranking of Web pages and images by importance (authority). Searching by semantic similarity for discovering information related to user’s requests (but not explicitly specified in the queries) is a distinguishing feature of the system. IntelliSearch stores a crawl of the Web with more than 1,5 million Web pages with images and is accessible on the Internet. It offers an ideal test-bed for experimentation and training and serves as a framework for a realistic evaluation of many Web image retrieval methods.


Image Retrieval Semantic Similarity Image Query Vector Space Model Page Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arasu, A., Cho, J., Garcia-Molina, H., Paepke, A., Raghavan, S.: Searching the Web. ACM Transactions on Internet Technology 1(1), 2–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, E.R.: Modern Information Retrieval. Addison Wesley, Reading (1999)Google Scholar
  3. 3.
    Kherfi, M., Ziou, D., Bernardi, A.: Image Retrieval from the World Wide Web: Issues, Techniques, and Systems. ACM Computing Surveys 36(1), 35–67 (2004)CrossRefGoogle Scholar
  4. 4.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1349–1380 (2000)CrossRefGoogle Scholar
  5. 5.
    Taycher, L., Cascia, M., Sclaroff, S.: Image Digestion and Relevance Feedback in the ImageRover WWW Search Engine. In: 2nd Intern. Conf. on Visual Information Systems, San Diego, pp. 85–94 (1997)Google Scholar
  6. 6.
    Smith, J., Chang, S.F.: Visually Searching the Web for Content. IEEE Multimedia 4(3), 12–20 (1997)CrossRefGoogle Scholar
  7. 7.
    Aslandongan, Y., Yu, C.: Evaluating Strategies and Systems for Content-Based Indexing of Person Images on the Web. In: 8th Intern. Conf. on Multimedia, Marina del Rey, CA, pp. 313–321 (2000)Google Scholar
  8. 8.
    Shen, H.T., Ooi, B.C., Tan, K.L.: Giving Meanings to WWW Images. In: 8th Intern. Conf. on Multimedia, Marina del Rey, CA, pp. 39–47 (2000)Google Scholar
  9. 9.
    Gevers, T., Smeulders, A.: The PicToSeek WWW Image Search Engine. In: IEEE ICMS (1999)Google Scholar
  10. 10.
    Zhao, R., Grosky, W.: Narrowing the Semantic Gap—Improved Text-Based Web Document Retrieval Using Visual Features. IEEE Transactions on Multimedia (2), 189–200 (2002)Google Scholar
  11. 11.
    Voutsakis, E., Petrakis, E., Milios, E.: Weighted link analysis for logo and trademark image retrieval on the web. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), pp. 581–585 (2005)Google Scholar
  12. 12.
    Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM 46(5), 604–632 (1999)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Computer Systems Laboratory, Stanford Univ., CA (1998)Google Scholar
  14. 14.
    Bharat, K., Henzinger, M.R.: Improved Algorithms for Topic Distillation in a Hyperlinked Environment. In: Proc. of SIGIR 1998, Melbourne, pp. 104–111 (1998)Google Scholar
  15. 15.
    Lempel, R., Soffer, A.: PicASHOW: Pictorial Authority Search by Hyperlinks on the Web. ACM Transactions on Information Systems 20(1), 1–24 (2002)CrossRefGoogle Scholar
  16. 16.
    Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E., Milios, E.: Semantic Similarity Methods in WordNet and their Application to Information Retrieval on the Web. In: 7th ACM International Workshop on Web Information and Data Management (WIDM 2005), Bremen, Germany, pp. 10–16 (2005)Google Scholar
  17. 17.
    Salton, G.: Automatic Text Processing: The Transformation Analysis and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
  18. 18.
    Li, Y., Bandar, Z.A., McLean, D.: An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE Trans. on Knowledge and Data Engineering 15(4), 871–882 (2003)CrossRefGoogle Scholar
  19. 19.
    Bharat, K., Broder, A., Henzinger, M.R., Kumar, P., Venkatasubramanian, S.: The Connectivity server: Fast access to Linkage Information on the Web. In: Proceedings of the 7th International World Wide Web Conference (WWW-7), Brisbane, Australia, pp. 469–477 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Epimenides Voutsakis
    • 1
  • Euripides G. M. Petrakis
    • 1
  • Evangelos Milios
    • 2
  1. 1.Dept. of Electronic and Computer EngineeringTechnical University of Crete (TUC)Chania, CreteGreece
  2. 2.Faculty of Computer ScienceDalhousie UniversityHalifax, Nova ScotiaCanada

Personalised recommendations