Topological Active Nets for Object-Based Image Retrieval

  • D. García-Pérez
  • S. Berretti
  • A. Mosquera
  • A. Del Bimbo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)

Abstract

Extraction of relevant image objects and their matching for retrieval applications is proposed in this paper. Objects are represented by using a two dimensional deformable structure, referred to as active net, capable to adapt to relevant image regions according to chromatic and edge information. In particular, an extension of the active nets has been defined which permits the nets to break themselves, thus increasing their capability to adapt to objects with complex topological structure (e.g., objects with holes). The resulting representation allows a joint description of color, shape and structural information of extracted objects. A similarity measure between active nets is also defined and validated in a set of retrieval experiments on the ETH-80 objects database.

Keywords

Color Space Image Retrieval Internal Node Machine Intelligence Object Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Del Bimbo, A.: Visual Information Retrieval. Academic Press, San Francisco (1999)Google Scholar
  2. 2.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  3. 3.
    Flickner, M., Niblack, W., Sawhney, H., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the qbic system. IEEE Computer 28(9), 23–32 (1995)Google Scholar
  4. 4.
    Wang, J., Li, J., Wiederhold, G.: Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)CrossRefGoogle Scholar
  5. 5.
    Gevers, T., Smeulders, A.: Color based object recognition. Pattern Recognition 32, 453–464 (1999)CrossRefGoogle Scholar
  6. 6.
    Hoiem, D., Sukthankar, R., Schneiderman, H., Huston, L.: Object-based image retrieval using the statistical structure of images. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 2, pp. 490–497 (2004)Google Scholar
  7. 7.
    Xu, Y., Duygulu, P., Saber, E., Tekalp, A., Yarman-Vural, F.: Object-based image retrieval based on multi-level segmentation. In: IEEE Conf. on Acoustics, Speech, and Signal Processing (2000)Google Scholar
  8. 8.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation maximization and its application to image querying. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)CrossRefGoogle Scholar
  9. 9.
    Gevers, T., Smeulders, A.: Pictoseek: Combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing 9(1), 102–119 (2000)CrossRefGoogle Scholar
  10. 10.
    Ansia, F., Penedo, M., Mari, C., Lez, J., Mosquera, A.: Automatic 3d shape reconstruction of bones using active net based segmentation. In: Proc. Int. Conf. on Pattern Recognition, Barcelona, Spain, pp. 486–489 (2000)Google Scholar
  11. 11.
    Uchiyama, T., Arbib, M.: Color image segmentation using competitive learning. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(12), 1197–1206 (1994)CrossRefGoogle Scholar
  12. 12.
    Berretti, S., Del Bimbo, A., Vicario, E.: Efficient matching and indexing of graph models in content based retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1089–1105 (2001)CrossRefGoogle Scholar
  13. 13.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, Madison, USA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. García-Pérez
    • 1
  • S. Berretti
    • 2
  • A. Mosquera
    • 1
  • A. Del Bimbo
    • 2
  1. 1.Departamento de Electrónica y ComputaciónUniversidade de Santiago de CompostelaSpain
  2. 2.Dipartimento di Sistemi e InformaticaUniversity of FirenzeItaly

Personalised recommendations