DCT-Domain Predictive Coding Method for Video Compression

  • Kook-yeol Yoo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


The H.263 Annex I method for the intraframe coding is based on the prediction in DCT domain, unlike JPEG, MPEG-1, and MPEG-2 where the intraframe coding uses block DCT, independent of the neighboring blocks. In this paper, we show the ineffectiveness of H.263 Annex I prediction method by mathematically deriving the spatial domain meaning of H.263 Annex I prediction method. Based on the derivation, we propose a prediction method which is based on the spatial correlation property of image signals. From the experiment and derivation, we verified the proposed method.


Prediction Method Video Compression Current Block Neighboring Block Pixel Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoo, K.-Y.: New packetization method for error resilient video communications. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp. 329–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Conklin, G.J., Greenbaum, G.S., et al.: Streaming video over the Internet: approaches and directions. IEEE Trans. on Circ. Syst. Video Technol. 11, 282–300 (2001)CrossRefGoogle Scholar
  3. 3.
    Yoo, K.-Y.: Adaptive resynchronisation marker positioning method for error resilient video transmission. IEE Electronics Letters 34, 2084–2085 (1998)CrossRefGoogle Scholar
  4. 4.
    Liao, J.Y., Villasenor, J.: Adaptive intra block update for robust transmission of H.263. IEEE Trans. on Circ. Syst. Video Technol. 10, 30–35 (2000)CrossRefGoogle Scholar
  5. 5.
    Cote, G., Kossentini, F.: Optimal intra coding of blocks for robust video communication over Internet. Signal Processing: Image Communication 15, 25–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Roh, B.H., Kim, J.K.: Starting time selection and scheduling methods for minimum cell loss ratio of superposed VBR MPEG video traffic. IEEE Trans. on Circ. Syst. Video Technol., 920–928 (1999)Google Scholar
  7. 7.
    Kim, H.C., Yoo, K.-Y.: Complexity-scalable DCT-based video coding algorithm for computation limited terminals. IEICE Trans. Communications, 2868–2871 (2005)Google Scholar
  8. 8.
    Pennebaker, W.B., Mitchell., J.L.: JPEG: still image data compression standard, New York, Van Nostrand (1993)Google Scholar
  9. 9.
    MPEG Editorial Group: Coding of moving pictures and associated audio for DSM at upto about 1.5Mbits/s: ISO/IEC 11172-2 Video IS. ISO/IEC JTC1/SC29/WG11 (1993)Google Scholar
  10. 10.
    MPEG Editorial Group: Generic coding of moving pictures and associated audio: ISO/IEC 13818-2 Video IS. ISO/IEC JTC1/SC29/WG11 (1995)Google Scholar
  11. 11.
    ITU-T: ITU-T Recommendation H.263, Video coding for low bit rate communication, ITU-T (1998) Google Scholar
  12. 12.
    Signal Process. Multimed. Lab., Univ. British Columbia: TMN 8 (H.263+) encoder/decoder, version 3.1.3, TMN 8 (H.263+) Codec (1998)Google Scholar
  13. 13.
    Lee, S.H., Yoo, K.-Y., Kim, J.-K.: A convergence analysis of a differential method for 2-D motion parameter estimation. Journal of KICS 23, 1869–1882 (1998)Google Scholar
  14. 14.
    Jain, A.K.: Fundamentals of digital image processing. Prentice Hall Inc., Englewood Cliffs (1989)MATHGoogle Scholar
  15. 15.
    Sullivan, G.: Draft Meeting Report of the Eighth Meeting (Meeting H) of the ITU-T Q.15/16, ITU-T Q.15/16, Doc. # Q15-H37d1, Berlin, Germany (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kook-yeol Yoo
    • 1
  1. 1.School of EECSYeungnam UniversityKyungsan-City, KyungpookSouth Korea

Personalised recommendations