Frozen-State Hierarchical Annealing

  • Wesley R. Campaigne
  • Paul Fieguth
  • Simon K. Alexander
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


There is growing demand for methods to synthesize large images of porous media. Binary porous media generally contain structures with a wide range of scales. This poses difficulties for generating accurate samples using statistical techniques such as simulated annealing. Hierarchical methods have previously been found quite effective for such problems. In this paper, a frozen-state approach to hierarchical annealing is presented that offers over an order of magnitude reduction in computational complexity versus existing hierarchical techniques. Current limitations to this approach and areas of further research are discussed.


Porous Medium Training Data Simulated Annealing Energy Function Training Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, S.K., Fieguth, P., Vrscay, E.R.: Hierarchical annealing for random image synthesis. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Alexander, S.K., Fieguth, P., Vrscay, E.R.: Parameterized hierarchical annealing for scientific models. In: Campilho, A.C., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 236–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Alexander, S.K., Fieguth, P., Vrscay, E.R.: Hierarchical Annealing for Scientific Models. IEEE ICASSP 3, 33–36 (2004)Google Scholar
  4. 4.
    Bouman, C., Shapiro, M.: A multiscale random field model for Bayesian image segmentation. IEEE Image Processing 3(2), 162–177 (1994)CrossRefGoogle Scholar
  5. 5.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE PAMI 6, 721–741 (1984)MATHGoogle Scholar
  6. 6.
    Gidas, B.: A renormalization group approach to image processing problems. IEEE PAMI 11(2), 164–180 (1989)MATHGoogle Scholar
  7. 7.
    Hofmann, T., Puzicha, J., Buhmann, J.M.: Unsupervised texture segmentation in a deterministic annealing framework. IEEE PAMI 20(8), 803–818 (1998)Google Scholar
  8. 8.
    Kainourgiakis, M.E., Kikkinides, E.S., Charalambopoulou, G.C., Stubos, A.K.: Simulated annealing as a method for the determination of the spatial distribution of a condensable adsorbate in mesoporous materials. Langmuir 19(8), 3333–3337 (2003)CrossRefGoogle Scholar
  9. 9.
    Kato, Z., Berthod, M., Zerubia, J.: A hierarchical Markov random field model and multitemperature annealing for parallel image classification. Graphical Models and Image Processing 58, 18–37 (1996)CrossRefGoogle Scholar
  10. 10.
    Liang, Z., Ioannidis, M.A., Chatzis, I.: Reconstruction of 3d porous media using simulated annealing. In: Bentley, et al. (eds.) Computational Methods in Water Resources XIII, Balkema, Rotterdam (2000)Google Scholar
  11. 11.
    Rozman, M.G., Utz, M.: Efficient reconstruction of multiphase morphologies from correlation functions. Physical Review E 63(066701) (2001)Google Scholar
  12. 12.
    Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters A 122, 157–162 (1987)CrossRefGoogle Scholar
  13. 13.
    Talukdar, M.S., Torsaeter, O., Ioannidis, M.A.: Stochastic recontruction of particulate media from two-dimensional images. Journal of Colloid and Interface Science 248(2), 419–428 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wesley R. Campaigne
    • 1
  • Paul Fieguth
    • 1
  • Simon K. Alexander
    • 2
  1. 1.Department of Systems Design EngineeringUniversity of WaterlooWaterloo, OntarioCanada
  2. 2.Department of MathematicsUniversity of HoustonHoustonU.S.A.

Personalised recommendations