Advertisement

Morphological Image Interpolation to Magnify Images with Sharp Edges

  • Valérie De Witte
  • Stefan Schulte
  • Etienne E. Kerre
  • Alessandro Ledda
  • Wilfried Philips
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)

Abstract

In this paper we present an image interpolation method, based on mathematical morphology, to magnify images with sharp edges. Whereas a simple blow up of the image will introduce jagged edges, called ‘jaggies’, our method avoids these jaggies, by first detecting jagged edges in the trivial nearest neighbour interpolated image, making use of the hit-or-miss transformation, so that the edges become smoother. Experiments have shown that our method performs very well for the interpolation of ‘sharp’ images, like logos, cartoons and maps, for binary images and colour images with a restricted number of colours.

Keywords

Colour Image Binary Image Interpolation Method Sharp Edge Mathematical Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolations Methods In Medical Image Processing. IEEE Transactions on Medical Imaging 18(11), 1049–1075 (1999)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Allebach, J., Wong, P.W.: Edge-Directed Interpolation. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1996, Switzerland, vol. 3, pp. 707–710 (1996)Google Scholar
  4. 4.
    Li, X., Orchard, M.T.: New Edge-Directed Interpolation. IEEE Transactions on Image Processing 10(10), 1521–1527 (2001)CrossRefGoogle Scholar
  5. 5.
    Muresan, D.D., Parks, T.W.: New Edge-Directed Interpolation. IEEE Transactions on Image Processing 13(5), 690–698 (2004)CrossRefGoogle Scholar
  6. 6.
    Tschumperlé, D.: PDE’s Based Regularization of Multivalued Images and Applications, Ph.D thesis, Université de Nice, France (2002)Google Scholar
  7. 7.
    Morse, B.S., Schwartzwald, D.: Isophote-Based Interpolation. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1998, USA, pp. 227–231 (1998)Google Scholar
  8. 8.
    Luong, H.Q., De Smet, P., Philips, W.: Image Interpolation Using Constrained Adaptive Contrast Enhancement Techniques. In: Proceedings of the IEEE International Conference on Image Processing ICIP 2005, Italy, pp. 998–1001 (2005)Google Scholar
  9. 9.
    Honda, H., Haseyama, M., Kitajima, H.: Fractal Interpolation for Natural Images. In: Proceedings of the IEEE International Conference on Image Processing ICIP 1999, Japan, pp. 657–661 (1999)Google Scholar
  10. 10.
    Stepin, M.: hq3x Magnification Filter (2003), http://www.hiend3d.com/hq3x.html
  11. 11.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-Based Super-Resolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)CrossRefGoogle Scholar
  12. 12.
    Power Retouche: Anti-aliasaing Filter (2001-2006), http://www.powerretouche.com/Antialias_plugin_introduction.htm
  13. 13.
    Sangwine, S.J., Horne, R.E.N.: The Colour Image Processing Handbook. Chapman & Hall, London (1998)Google Scholar
  14. 14.
    Sharma, G.: Digital Color Imaging Handbook. CRC Press, Boca Raton (2003)Google Scholar
  15. 15.
    Heijmans, H.J.A.M., Ronse, C.: The Algebraic Basis of Mathematical Morphology, Part1: Dilations and Erosions. Computer Vision, Graphics and Image Processing 50, 245–295 (1990)CrossRefMATHGoogle Scholar
  16. 16.
    Ronse, C., Heijmans, H.J.A.M.: The Algebraic Basis of Mathematical Morphology, Part2: Openings and Closings. Computer Vision, Graphics and Image Processing 54, 74–97 (1991)MATHGoogle Scholar
  17. 17.
    Heijmans, H.J.A.M.: Morphological Image Operators. In: Advances in Electronics and Electron Physics, Academic Press, Inc., London (1994)Google Scholar
  18. 18.
    De Witte, V., Schulte, S., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Vector Morphological Operators for Colour Images. In: Kamel, M., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 667–675. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ledda, A., Luong, H.Q., Philips, W., De Witte, V., Kerre, E.E.: Image Interpolation Using Mathematical Morphology. In: The Second International Conference on Document Image Analysis for Libraries DIAL 2006, France (accepted, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Valérie De Witte
    • 1
  • Stefan Schulte
    • 1
  • Etienne E. Kerre
    • 1
  • Alessandro Ledda
    • 2
  • Wilfried Philips
    • 2
  1. 1.Department of Applied Mathematics and Computer Science, Fuzziness and Uncertainty Modelling Research UnitGhent UniversityGentBelgium
  2. 2.Telin DepartmentIPI GroupGentBelgium

Personalised recommendations