New Method for Fast Detection and Removal of Impulsive Noise Using Fuzzy Metrics

  • Joan-Gerard Camarena
  • Valentín Gregori
  • Samuel Morillas
  • Guillermo Peris-Fajarnés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


A novel approach to impulsive noise detection in color images is introduced. The neighborhood of a central pixel using a fuzzy metric is considered for the fast detection of noisy pixels using a peer group concept. Then, a filter based on a switching scheme between the Arithmetic Mean Filter (AMF) and the identity operation is proposed. The proposed filter reaches a very good balance between noise suppression and detail-preserving outperforming significantly the classical vector filters. The presented approach is faster than recently introduced switching filters based on similar concepts showing a competitive performance.


Color Image Detail Image Mean Absolute Error Impulsive Noise Fast Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allende, H., Galbiati, J.: A non-parametric filter for image restoration using cluster analysis. Pattern Recognition Letters 25(8), 841–847 (2004)CrossRefGoogle Scholar
  2. 2.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proc. IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  3. 3.
    Camacho, J., Morillas, S., Latorre, P.: Efficient impulsive noise suppression based on statistical confidence limits. Journal of Imaging Science and Technology (to appear)Google Scholar
  4. 4.
    Deng, Y., Kenney, C., Moore, M.S., Manjunath, B.S.: Peer group filtering and perceptutal color image quantization. In: Proceedings of IEEE international symposium on circuits and systems, vol. 4, pp. 21–24 (1999)Google Scholar
  5. 5.
    George, A., Veeramani, P.: On Some results in fuzzy metric spaces. Fuzzy Sets and Systems 64(3), 395–399 (1994)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets and Systems 115(3), 477–483 (2000)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems 144(3), 411–420 (2004)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Karakos, D.G., Trahanias, P.E.: Generalized multichannel image-filtering structure. IEEE Transactions on Image Processing 6(7), 1038–1045 (1997)CrossRefGoogle Scholar
  10. 10.
    Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer group image enhancement. IEEE Transactions on Image Processing 10(2), 326–334 (2001)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lukac, R.: Adaptive vector median filtering. Pattern Recognition Letters 24(12), 1889–1899 (2003)CrossRefGoogle Scholar
  12. 12.
    Lukac, R., Smolka, B., Martin, K., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector Filtering for Color Imaging. IEEE Signal Processing Magazine, Special Issue on Color Image Processing 22(1), 74–86 (2005)Google Scholar
  13. 13.
    Lukac, R.: Adaptive Color Image Filtering Based on Center Weighted Vector Directional Filters. Multidimensional Systems and Signal Processing 15, 169–196 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Lukac, R., Plataniotis, K.N., Venetsanopoulos, A.N., Smolka, B.: A Statistically-Switched Adaptive Vector Median Filter. Journal of Intelligent and Robotic Systems 42, 361–391 (2005)CrossRefGoogle Scholar
  15. 15.
    Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector sigma filters for noise detection and removal in color images. Journal of Visual Communication and Image Representation 17(1), 1–26 (2006)CrossRefGoogle Scholar
  16. 16.
    Ma, Z., Feng, D., Wu, H.R.: A neighborhood evaluated adaptive vector filter for suppression of impulsive noise in color images. Real-Time Imaging 11, 403–416 (2005)CrossRefGoogle Scholar
  17. 17.
    Morillas, S., Gregori, V., Peris-Fajarnés, G., Latorre, P.: A new vector median filter based on fuzzy metrics. In: Kamel, M., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 81–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Morillas, S., Gregori, V., Peris-Fajarnés, G., Latorre, P.: A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging 11(5-6), 417–428 (2005)CrossRefGoogle Scholar
  19. 19.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image processing and applications. Springer, Berlin (2000)Google Scholar
  20. 20.
    Sapena, A.: A contribution to the study of fuzzy metric spaces. Appl. Gen. Topology 2(1), 63–76 (2001)MathSciNetMATHGoogle Scholar
  21. 21.
    Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, W.: Fast adaptive similarity based impulsive noise reduction filter. Real-Time Imaging 9(4), 261–276 (2003)CrossRefGoogle Scholar
  22. 22.
    Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M., Venetsanopoulos, A.N., Wojciechowski, K.: Self-adaptive algorithm of impulsive noise reduction in color images. Pattern Recognition 35(8), 1771–1784 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Smolka, B., Chydzinski, A.: Fast detection and impulsive noise removal in color images. Real-Time Imaging 11, 389–402 (2005)CrossRefGoogle Scholar
  24. 24.
    Smolka, B., Plataniotis, K.N.: Ultrafast technique of impulsive noise removal with application to microarray image denoising. In: Kamel, M., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 990–997. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Trahanias, P.E., Karakos, D., Venetsanopoulos, A.N.: Directional processing of color images: theory and experimental results. IEEE Trans. Image Process. 5(6), 868–880 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joan-Gerard Camarena
    • 1
  • Valentín Gregori
    • 1
  • Samuel Morillas
    • 2
  • Guillermo Peris-Fajarnés
    • 2
  1. 1.E.P.S. de Gandia, Departamento de Matemática AplicadaUniversidad Politécnica de ValenciaGrao de Gandia (Valencia)Spain
  2. 2.E.P.S. de Gandia, Departamento de Expresión Gráfica en la IngenieríaUniversidad Politécnica de ValenciaGrao de Gandia (Valencia)Spain

Personalised recommendations