On the Adaptive Impulsive Noise Attenuation in Color Images

  • Bogdan Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


In this paper a novel method of impulsive noise suppression in color images is described. The new approach is based on a soft-switching scheme, whose output is the weighted average of the central pixel and the vector median of the local filtering window. The noise detection component of the switching filtering framework is based on the difference between accumulated distances assigned to the vector median of the local data and the central pixel in the filtering mask. The results of simulations performed on a set of test images show that the proposed method is capable of reducing even strong impulsive noise while retaining the image structures.


Color Image Noise Intensity Central Pixel Mean Absolute Error Impulsive Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proc. of the IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  2. 2.
    Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. on PAMI 7(2), 165–177 (1985)Google Scholar
  3. 3.
    Smolka, B., Plataniotis, K.N.: Soft-Switching Adaptive Technique of Impulsive Noise Removal in Color Images. In: Kamel, M., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 686–694. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Smolka, B., Chydzinski, A.: Fast Detection and Impulsive Noise Removal in Color Images. Real-Time Imaging 11, 389–402 (2005)CrossRefGoogle Scholar
  5. 5.
    Lukac, R.: Color Image Filtering by Vector Directional Order-Statistics. Pattern Recognition and Image Analysis 12(3), 279–285 (1990)MathSciNetGoogle Scholar
  6. 6.
    Gabbouj, M., Cheickh, F.A.: Vector median - Vector Directional Hybrid Filter for Colour Image Restoration. In: Proc. of EUSIPCO, Trieste, Italy, September 10-13, pp. 879–881 (1996)Google Scholar
  7. 7.
    Beghdadi, A., Khellaf, K.: A Noise-Filtering Method Using a Local Information Measure. IEEE Transactions on Image Processing 6, 879–882 (1997)CrossRefGoogle Scholar
  8. 8.
    Lukac, R.: Vector LUM Smoothers as Impulse Detector for Color Images. In: Proc. of European Conference on Circuit Theory and Design (ECCTD), Espoo, Finland, vol. III, pp. 137–140 (2001)Google Scholar
  9. 9.
    Lukac, R., Marchevsky, S.: Adaptive Vector LUM Smoother. In: Proc. of IEEE International Conference on Image Processing (ICIP), Thessaloniki, Greece, vol. 1, pp. 878–881 (2001)Google Scholar
  10. 10.
    Park, J., Kurz, L.: Image Enhancement Using the Modified ICM Method. IEEE Transactions on Image Processing 5(5), 765–771 (1996)CrossRefGoogle Scholar
  11. 11.
    Lukac, R., Fischer, V., Motyl, G., Drutarovsky, M.: Adaptive Video Filtering Framework. International Journal of Imaging Systems and Technology 14(6), 223–237 (2004)CrossRefGoogle Scholar
  12. 12.
    Lukac, R.: Adaptive Vector Median Filtering. Pattern Recognition Letters 24(12), 1889–1899 (2003)CrossRefGoogle Scholar
  13. 13.
    Lukac, R.: Adaptive Color Image Filtering Based on Center-Weighted Vector Directional Filters. Multidimensional Systems and Signal Processing 15(2), 169–196 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Smolka, B.: Efficient Modification of the Central Weighted Vector Median Filter. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 166–173. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, K.: Fast Adaptive Similarity Based Impulsive Noise Reduction Filter. Real Time Imaging 9, 261–276 (2003)CrossRefGoogle Scholar
  16. 16.
    Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M., Venetsanopulos, A.N., Wojciechowski, K.: Self-Adaptive Algorithm of Impulsive Noise Reduction in Color Images. Pattern Recognition 35, 1771–1784 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Generalized Adaptive Vector Sigma Filters. In: Proc. of IEEE International Conference on Multimedia and Expo. (ICME), Baltimore, USA, vol. I, pp. 537–540 (2003)Google Scholar
  18. 18.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Heidelberg (2000)Google Scholar
  19. 19.
    Viero, T., Öistämö, K., Neuvo, Y.: Three-dimensional Median-related Filters for Color Image Sequence Filtering. IEEE Trans. on Circiuts and Systems for Video Technology 4(2), 129–142 (1994)CrossRefGoogle Scholar
  20. 20.
    Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Nonlinear Techniques for Color Image Processing. In: Barner, K.E., Arce, G.R. (eds.) Nonlinear Signal and Image Processing, Theory, Methods, and Applications, pp. 445–505. CRC Press, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bogdan Smolka
    • 1
  1. 1.Department of Automatic ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations