Improvement of Image Transform Calculation Based on a Weighted Primitive

  • María Teresa Signes Pont
  • Juan Manuel García Chamizo
  • Higinio Mora Mora
  • Gregorio de Miguel Casado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


This paper presents a method to improve the calculation of functions that demand a great amount of computing resources. The fundamentals argue for an increase of the computing power of the primitive level in order to decrease the number of computing levels required to carry out calculations. A weighted primitive substitutes the usual primitives sum and multiplication and calculates the function values by successive iterations. The parametric architecture associated to the weighted primitive is particularly suitable in the case of combined trigonometric functions sine and cosine involved in the calculation of image transforms. The Hough Transform (HT) and the Fourier Transform (FT) are analyzed under this scope, obtaining a good performance and trade-off between speed and area requirements when comparing with other well-known proposals.


Orthogonal Frequency Division Multiplex Partial Product Hough Transform VLSI Architecture Parametric Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muamar, H.K., Nixon, M.: Tristage Hough Transform for multiple ellipse extraction. IEEE Proc. Computer and Digital Techniques 138(1), 27–35 (1991)CrossRefGoogle Scholar
  2. 2.
    Haule, D.D., Malowany, A.S.: Object Recognition using fast adaptative HT. In: IEEE Comp. Pacific Conf. On Communication, Compiler and Signal Processing, pp. 91–94 (1989)Google Scholar
  3. 3.
    da Silva, I.: Vectorization from aerial photographs applying the HT method. In: Proc. SPIE, vol. 1395(2), pp. 956–963 (1990)Google Scholar
  4. 4.
    Hu, Y.H.: CORDIC-based VLSI architectures for Digital Signal Processing. IEEE Signal Processing Magazine 7, 16–35 (1992)CrossRefGoogle Scholar
  5. 5.
    Villalba, J.: Diseño de Arquitecturas CORDIC multidimensionales. Tesis Doctoral Dept. de Arquitectura de Computadores. Universidad de Málaga (1995)Google Scholar
  6. 6.
    Chamberlain, R., Lord, E.: Real-time 2D floating-point fast Fourier transforms for seeker simulation. In: Proceedings SPIE, vol. 4717, pp. 15–23 (2002)Google Scholar
  7. 7.
    Yan, P., Liu, H.: Image restoration based on the discrete fraction Fourier transform. In: Proceedings SPIE, vol. 4552, pp. 280–285 (2001)Google Scholar
  8. 8.
    Chang, C.H., Wang, C.L., Chang, C.H.: Efficient VLSI architectures for fast computation of the discrete Fourier transform and its Inverse. IEEE Transactions on Signal Processing 48(11), 3206–3216 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Hsiao, S.F., Shiue, W.R.: Design of low-cost and high throughput linear arrays for DFT computations: algorithms, architectures and implementations. IEEE Transactions on Circuits and Systems II 47(11), 1188–1203 (2000)CrossRefGoogle Scholar
  10. 10.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Swarztrauber, E.E.: Multiprocessor FFTs. P.N. Parallel Computing 5, 197–210 (1987)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Chang, T.S., Guo, J.T., Jen, C.W.: Hardware Efficient DFT Designs with Cyclic Con-volution and Subexpression Sharing. IEEE Transactions on CAS II 47(9), 886–892 (2000)CrossRefGoogle Scholar
  13. 13.
    Fang, W.H., Wu, M.L.: An efficient unified systolic architecture for the computation of discrete trigonometric transform. In: Proceedings ISCAS, pp. 2092–2095 (1997)Google Scholar
  14. 14.
    González, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  15. 15.
    Katsuhiko, O.: Modern Control Engineering. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  16. 16.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  17. 17.
    Kittler, J., Alkoot, F.M.: Sum versus Vote Fusion in Multiple Classifier Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 110–115 (2003)CrossRefGoogle Scholar
  18. 18.
    Ercegovac, M., Lang, T.: Division and Square root: Digit-Recurrence, Algorithms and Implementations. Klüwer Academic Pub., Boston (1994)MATHGoogle Scholar
  19. 19.
    Piñeiro, J.A., Bruguera, J.D., Muller., J.M.: Faithful powering computation using table look-up and a fused accumulation tree. In: Proc. of the 15th International Symposium of Computer Arithmetic (ARITH’15) (2001)Google Scholar
  20. 20.
    Deng, Dixon, D.S., El Gindy, H.: High speed Parametrizable HT using reconfigurable hardware. In: Pan-Sydney Area Workshop an Visual Information Processing (VIP) (2001)Google Scholar
  21. 21.
    Chien-Chang, L., Chih-Da, C.: A parametrized hardware design for the variable length discrete Fourier transform. In: 15th International Conference on VLSI design (2002)Google Scholar
  22. 22.
    Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Elect. Comput. EC- 8, 330–334 (1957)CrossRefGoogle Scholar
  23. 23.
    Andraka, R.: A survey of CORDIC algorithms for FPGA. In: Proceedings of the ACM/SIGDA sixth international symposium of Field Programmable Gate Arrays, pp. 191–200 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • María Teresa Signes Pont
    • 1
  • Juan Manuel García Chamizo
    • 1
  • Higinio Mora Mora
    • 1
  • Gregorio de Miguel Casado
    • 1
  1. 1.Departamento de Tecnología Informática y ComputaciónUniversity of AlicanteSan Vicente del Raspeig, AlicanteSpain

Personalised recommendations