An Effective and Fast Scene Change Detection Algorithm for MPEG Compressed Videos

  • Z. Li
  • J. Jiang
  • G. Xiao
  • H. Fang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4141)


In this paper, we propose an effective and fast scene change detection algorithm directly in MPEG compressed domain. The proposed scene change detection exploits the MPEG motion estimation and compensation scheme by examining the prediction status for each macro-block inside B frames and P frames. As a result, locating both abrupt and dissolved scene changes is operated by a sequence of comparison tests, and no feature extraction or histogram differentiation is needed. Therefore, the proposed algorithm can operate in compressed domain, and suitable for real-time implementations. Extensive experiments illustrate that the proposed algorithm achieves up to 94% precision for abrupt scene change detection and 100% for gradual scene change detection. In comparison with similar existing techniques, the proposed algorithm achieves superiority measured by recall and precision rates.


Motion Estimation Precision Rate Scene Change Scene Change Detection Error Concealment Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Totterdell, A.: An algorithm for detecting and classifying scene breaks in MPEG video bit streams, Technical report, No.5 (September 1998)Google Scholar
  2. 2.
    Zabih, R., Miller, J., Mai, K.: A feature-based algorithm for detecting and classifying production effects. Multimedia Systems 6(2), 119–128 (1999)CrossRefGoogle Scholar
  3. 3.
    Akrivas, G., Doulamis, N.D., Doulamis, A.D., Kollias, S.D.: Scene detection methods for MPEG-encoded video signals. In: Proceeding of the MELECON 2000 Mediterranean Electrotechnical Conference, Nicosia, Cyprus (May 2000)Google Scholar
  4. 4.
    Smeaton, A., et al.: An evaluation of alternative techniques for automatic detection of shot boundaries in digital video. In: Proc. Irish Machine Vision and Image Processing Conference (IMVIP 1999), Dublin, Ireland, September 8-9, pp. 45–62 (1999)Google Scholar
  5. 5.
    Lelescu, D., Schonfeld, D.: Statistical sequential analysis for real-time video scene change detection on compressed multimedia bitstream. IEEE Transactions on Multimedia 5(1), 106–117 (2003)CrossRefGoogle Scholar
  6. 6.
    Kim, J.-R., Suh, S., Sull, S.: Fast scene change detection for personal video recorder. IEEE Transactions on Consumer Electronics 49(3), 683–688 (2003)CrossRefGoogle Scholar
  7. 7.
    Doulaverakis, C., Vagionitis, S., Zervakis, M., Petrakis, E.: Adaptive methods for motion characterization and segmentation of MPEG compressed frame sequences. In: Campilho, A.C., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 310–317. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Porter, S., Mirmehdi, M., Thosma, B.: Temporal video segmentation and classification of edit effects. Image and Vision Computing 21(13-14), 1098–1106 (2003)CrossRefGoogle Scholar
  9. 9.
    Saez, E., Benavides, J.I., Guil, N.: Reliabele time scene change detection in MPEG compressed video. In: ICME 2004, Taipei, June 27-30, pp. 567–570 (2004)Google Scholar
  10. 10.
    Bescos, J.: Real-time shot change detection over online MPEG-2 video. IEEE Transactions on Circuits and Systems for Video Technology 14(4), 475–484 (2004)CrossRefGoogle Scholar
  11. 11.
    Kiranyaz, S., Caglar, K., Cramariuc, B., Gabbouj, M.: Unsupervised scene change detection techniques in features domain via clustering and elimination. In: Proc. of Tyrrhenian International Workshop on Digital Communications, Capri, Italy, September 8-11 (2002)Google Scholar
  12. 12.
    Fernando, W.A.C., Canagarajah, C.N., Bull, D.R.: Scene change detection algorithms for content-based video indexing and retrival. Electronics&communication engineering journal, 117–126 (June 2001)Google Scholar
  13. 13.
    Pei, S.-C., Chou, Y.-Z.: Novel error concealment method with adaptive prediction to the abrupt and gradual scene changes. IEEE transactions on multimedia 6(1), 158–173 (2004)CrossRefGoogle Scholar
  14. 14.
    Nang, J., Hong, S., Ihm, Y.: An efficient video segmentation scheme for MPEG video stream using macroblock information. In: Proceedings of the 7th ACM International Conference on Multimedia 1999, Orlando, FL, USA, October 30 - November 5, vol. 1, pp. 23–26. ACM, New York (1999)CrossRefGoogle Scholar
  15. 15.
    Chen, S.-C., Shyu, M.-L., Zhang, C.-C., Kashyap, R.L.: Video scene change detection method using unsuper segmentation and object tracking. In: IEEE International Conference on Multimedia and Expo. (ICME), pp. 57–60 (2001)Google Scholar
  16. 16.
    Oh, J., Hua, K.A., Liang, N.: A content-based scene change detection and classification technique using background tracking. In: Proc. of IS&T/SPIE Conference on Multimedia Computing and Networking 2000, San Jose, CA, January 2000, pp. 254–265 (2000)Google Scholar
  17. 17.
    Han, S.H.: Shot detection combining bayesian and structural information. In: Storage and Retrieval for Media Databases 2001, vol. 4315, December 2001, pp. 509–516 (2001)Google Scholar
  18. 18.
    Lu, H.B., Zhang, Y.J.: Detecting abrupt scene change using neural network. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 291–298. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Z. Li
    • 1
  • J. Jiang
    • 1
    • 2
  • G. Xiao
    • 1
  • H. Fang
    • 2
  1. 1.Faculty of Informatics & ComputingSouthwest China UniversityChongqinChina
  2. 2.Department of EIMCUniversity of BradfordUK

Personalised recommendations