Skip to main content

Intersection of Regular Signal-Event (Timed) Languages

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4202)

Abstract

We propose in this paper a construction for a “well known” result: regular signal-event languages are closed by intersection. In fact, while this result is indeed trivial for languages defined by Alur and Dill’s timed automata (the proof is an immediate extension of the one in the untimed case), it turns out that the construction is much more tricky when considering the most involved model of signal-event automata. While several constructions have been proposed in particular cases, it is the first time, up to our knowledge, that a construction working on finite and infinite signal-event words and taking into account signal stuttering, unobservability of zero-duration τ-signals and Zeno runs is proposed.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

    CrossRef  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Proceedings of LICS 1997, pp. 160–171. IEEE Comp. Soc. Press, Los Alamitos (1997)

    Google Scholar 

  4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2), 172–206 (2002)

    CrossRef  MathSciNet  Google Scholar 

  5. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Bérard, B., Gastin, P., Petit, A.: Refinements and abstractions of signal-event (timed) languages. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 67–81. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Bérard, B., Gastin, P., Petit, A.: Timed substitutions for regular signal-event languages. Research Report LSV-06-04, Laboratoire Spécification et Vérification, ENS Cachan, France (February 2006)

    Google Scholar 

  8. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in System Design 24(3), 281–320 (2004)

    CrossRef  MATH  Google Scholar 

  9. Cuijpers, P.J.L., Reniers, M.A., Engels, A.G.: Beyond zeno-behaviour. Technical Report CSR 01-04, Department of Computing Science, University of Technology, Eindhoven (2001)

    Google Scholar 

  10. Dima, C.: Real-Time Automata and the Kleene Algebra of Sets of Real Numbers. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 279–289. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  11. Durand-Lose, J.: A Kleene theorem for splitable signals. Information Processing Letters 89, 237–245 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Hansen, M.R., Pandya, P.K., Zhou, C.: Finite divergence. Theoretical Computer Science 138, 113–139 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Perrin, D., Pin, J.-E.: Infinite words. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bérard, B., Gastin, P., Petit, A. (2006). Intersection of Regular Signal-Event (Timed) Languages. In: Asarin, E., Bouyer, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2006. Lecture Notes in Computer Science, vol 4202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867340_5

Download citation

  • DOI: https://doi.org/10.1007/11867340_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45026-9

  • Online ISBN: 978-3-540-45031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics