Advertisement

Symbolic Robustness Analysis of Timed Automata

  • Conrado Daws
  • Piotr Kordy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4202)

Abstract

We propose a symbolic algorithm for the analysis of the robustness of timed automata, that is the correctness of the model in presence of small drifts on the clocks or imprecision in testing guards. This problem is known to be decidable with an algorithm based on detecting strongly connected components on the region graph, which, for complexity reasons, is not effective in practice.

Our symbolic algorithm is based on the standard algorithm for symbolic reachability analysis using zones to represent symbolic states and can then be easily integrated within tools for the verification of timed automata models. It relies on the computation of the stable zone of each cycle in a timed automaton. The stable zone is the largest set of states that can reach and be reached from itself through the cycle. To compute the robust reachable set, each stable zone that intersects the set of explored states has to be added to the set of states to be explored.

Keywords

Reachable State Stable Zone Symbolic State Region Graph Unsafe State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altisen, K., Tripakis, S.: Implementation of timed automata: an issue of semantics or modeling? Technical report, Verimag, Centre Équation, 38610 Gières (June 2005)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Daws, C.: Vérification de systèmes temporisés: de la théorie à la pratique. PhD thesis, Institut National Polytechnique de Grenoble (October 20, 1998)Google Scholar
  6. 6.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    De Wulf, M., Doyen, L., Raskin, J.: Almost ASAP Semantics: from timed models to timed implementations (2004)Google Scholar
  9. 9.
    Gupta, V., Henzinger, T., Jagadeesan, R.: Robust Timed Automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Software Tools for Technology Transfer 1(1+2), 134–152 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: LICS 2003: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, Washington, DC, USA, p. 198. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  12. 12.
    Puri, A.: Dynamical Properties of Timed Automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Puri, A.: Dynamical Properties of Timed Automata. Discrete Event Dynamic Systems-Theory and Applications 10(1-2), 87–113 (2000)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Conrado Daws
    • 1
    • 2
  • Piotr Kordy
    • 2
  1. 1.Department of Applied Mathematics 
  2. 2.Formal Methods Group, Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations