Piecewise-Quadrilateral Registration by Optical Flow – Applications in Contrast-Enhanced MR Imaging of the Breast

  • Michael S. Froh
  • David C. Barber
  • Kristy K. Brock
  • Donald B. Plewes
  • Anne L. Martel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


In this paper we propose a method for the nonrigid registration of contrast-enhanced dynamic sequences of magnetic resonance(MR) images. The algorithm has been developed with accuracy in mind, but also has a clinically viable execution time (i.e. a few minutes) as a goal. The algorithm is driven by multiresolution optical flow with the brightness consistency assumption relaxed, subject to a regularized best-fit within a family of transforms. The particular family of transforms we have employed uses a grid of control points and trilinear interpolation. We present validation results from a study simulating non-rigid deformation by a biomechanical model of the breast, with simulated uptake of a contrast agent. We further present results from applying the algorithm as part of a routine breast cancer screening protocol.


Control Point Optical Flow Registration Method Biomechanical Model Breast Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Warner, E., Plewes, D.B., Hill, K.A., Causer, P.A., Zubovits, J.T., Jong, R.A., Cutrara, M.R., DeBoer, G., Yaffe, M.J., Messner, S.J., Meschino, W.S., Pirod, C.A., Narod, S.A.: Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. Journal of the American Medical Association 292(11), 1317–1325 (2004)CrossRefGoogle Scholar
  2. 2.
    American College of Radiology(ACR): Breast Imaging Reporting and Data System (BI-RADS), 2nd edn. American College of Radiology, Reston, Virginia (1995)Google Scholar
  3. 3.
    Kuhl, C.K., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E., Giesek, J., Schil, H.H.: Dynamic breast mr imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211, 101–110 (1999)Google Scholar
  4. 4.
    Zuo, C., Jiang, A., Buff, B.L., Mahon, T.G., Wong, T.Z.: Automatic motion correction for breast mr imaging. Radiology 198(3), 903–906 (1996)Google Scholar
  5. 5.
    Kumar, R., Asmuth, J.C., Hanna, K., Bergen, J., Hulka, C., Kopans, D.B., Weisskoff, R., Moore, R.: Application of 3d registration for detecting lesions in magnetic resonance breast scans. In: Proc. SPIE Medical Imaging 1996: Image Processing, vol. 2710, pp. 646–656 (1996)Google Scholar
  6. 6.
    Davis, M., Khotanzad, A., Flamig, D., Harms, S.: A physics based coordinate transformation for 3d image matching. IEEE Trans. Med. Imag. 16(3), 317–328 (1997)CrossRefGoogle Scholar
  7. 7.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  8. 8.
    Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J.: Validation of nonrigid image registration using finite-element methods: Application to breast mr images. IEEE Trans. Med. Imag. 22(2), 238–247 (2003)CrossRefGoogle Scholar
  9. 9.
    Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving non-rigid registration of mr breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imag. 22(6), 730–741 (2003)CrossRefGoogle Scholar
  10. 10.
    Crum, W.R., Tanner, C., Hawkes, D.J.: Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging. Physics in Medicine and Biology 50(21), 5153–5174 (2005)CrossRefGoogle Scholar
  11. 11.
    Gennert, M.A., Negahdaripour, S.: Relaxing the brightness constancy assumption in computing optical flow. Massachusetts Institute of Technology Artificial Intelligence Laboratory AIM-975 (1987)Google Scholar
  12. 12.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  13. 13.
    Barber, D.C.: Registration of low resolution medical images. Physics in Medicine and Biology 37(7), 1485–1498 (1992)CrossRefGoogle Scholar
  14. 14.
    Hartkens, T., Rueckert, D., Schnabel, J., Hawkes, D., Hill, D.: VTK CISG registration toolkit: An open source software package for affine and non-rigid registration of single- and multimodal 3d images. In: Proc. Bildverarbeitung in der Medizin 2002. LNCS, pp. 409–412. Springer, Leipzig (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael S. Froh
    • 1
  • David C. Barber
    • 2
  • Kristy K. Brock
    • 3
  • Donald B. Plewes
    • 1
  • Anne L. Martel
    • 1
  1. 1.Department of Medical BiophysicsUniversity of TorontoCanada
  2. 2.Department of Medical PhysicsCentral Sheffield Teaching HospitalsSheffieldUK
  3. 3.Physics DepartmentPrincess Margaret HospitalCanada

Personalised recommendations