Advertisement

Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults

  • Günther Grabner
  • Andrew L. Janke
  • Marc M. Budge
  • David Smith
  • Jens Pruessner
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

In model-based segmentation, automated region identification is achieved via registration of novel data to a pre-determined model. The desired structure is typically generated via manual tracing within this model. When model-based segmentation is applied to human cortical data, problems arise if left-right comparisons are desired. The asymmetry of the human cortex requires that both left and right models of a structure be composed in order to effectively segment the desired structures. Paradoxically, defining a model in both hemi-spheres carries a likelihood of introducing bias to one of the structures. This paper describes a novel technique for creating a symmetric average model in which both hemispheres are equally represented and thus left-right comparison is possible. This work is an extension of that proposed by Guimond et al [1]. Hippocampal segmentation is used as a test-case in a cohort of 118 normal eld-erly subjects and results are compared with expert manual tracing.

Keywords

Registration Result Standard Deviation Image Individual Patient Anatomy Computerize Brain Atlas Average Scaling Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Guimond, A., Meunier, J., Thirion, J.-P.: Average brain models: A Convergence Study Computer Vision and Image Understanding 77(2), 192–210 (1999)Google Scholar
  2. 2.
    Filippi, M., Horsfield, M.A., Bressi, S., Martinelli, V., Baratti, C., Reganati, P., Campi, A., Miller, D.H., Comi, G.: Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. Brain 118(6), 1593–1600 (1995)CrossRefGoogle Scholar
  3. 3.
    Toga, A.W., Samaie, M., Payne, B.: Digital rat brain: a computerized atlas. Brain Res. Bull. 22(2), 323–333 (1989)CrossRefGoogle Scholar
  4. 4.
    Dann, R., Hoford, J., Kovacic, S., Reivich, M., Bajcsy, R.: Evaluation of elastic matching system for anatomic (CT, MR) and functional (PET) cerebral images. J. Comput. Assist. Tomogr. 13(4), 603–611 (1989)CrossRefGoogle Scholar
  5. 5.
    Greitz, T., Bohm, C., Holte, S., Eriksson, L.: A computerized brain atlas: construction, anatomical content, and some applications. J. Comput. Assist. Tomogr. 15(1), 26–38 (1991)CrossRefGoogle Scholar
  6. 6.
    Toh, M.Y., Falk, R.B., Main, J.S.: Interactive brain atlas with the Visible Human Project data: development methods and techniques. Radiographics 16(5), 1201–1206 (1996)Google Scholar
  7. 7.
    Toga, A.W., Thompson, P.M.: Maps of the brain. Anat. Rec. 265(2), 37–53 (2001)CrossRefGoogle Scholar
  8. 8.
    Gee, J.C., Reivich, M., Bajcsy, R.: Elastically deforming 3D atlas to match anatomical brain images. J. Comput. Assist. Tomogr. 17(2), 225–236 (1993)CrossRefGoogle Scholar
  9. 9.
    Thompson, P.M., Toga, A.W.: A Surface-Based Technique for Warping 3-Dimensional Images of the Brain. IEEE Trans. on Med. Imag. 15(4), 1–16 (1996)CrossRefGoogle Scholar
  10. 10.
    Davatzikos, C.: Spatial normalization of 3D brain images using deformable models. J. Comput. Assist. Tomogr. 20(4), 656–665 (1996)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Joshi, S.C., Miller, M.I., Csernansky, J.G.: Statistical analysis of hippocampal asymmetry in schizophrenia. Neuroimage 14(3), 531–545 (2001)CrossRefGoogle Scholar
  12. 12.
    Evans, A.C., Collins, D.L., Milner, B.: An MRI-based stereotaxic atlas from 250 young normal subjects. Society Neuroscience Abstracts 18, 408 (1992)Google Scholar
  13. 13.
    Sled, J.P., Zijdenbos, A.P., Evans, A.C.: A non-parametric method for automatic correction of intensity non-uniformity in MRI data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  14. 14.
    Collins, D.L., Holmes, C., Peters, T., Evans, A.: Automatic 3D Model-Based Neuroanatomical Segmentation. Human Brain Mapping 3, 190–208 (1995)CrossRefGoogle Scholar
  15. 15.
    Pruessner, J.C., Li, L.M., Serles, W., Pruessner, M., Collins, D.L., Kabani, N., Lupien, S., Evans, A.C.: Volumetry of Hippocampus and Amygdala with High-Resolution MRI and Three-dimensional Analysis Software: Minimizing the Discrepancies between Laboratories. Cerebral Cortex 10(4), 433–442 (2000)CrossRefGoogle Scholar
  16. 16.
    Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W.: Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapping 9(2), 81–92 (2000)CrossRefGoogle Scholar
  17. 17.
    Dawant, B.M., Zijdenbos, A.P., Margolin, R.A.: Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Trans. Med Imaging 12 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Günther Grabner
    • 1
    • 2
  • Andrew L. Janke
    • 1
  • Marc M. Budge
    • 2
  • David Smith
    • 3
  • Jens Pruessner
    • 1
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging CentreMontreal Neurological InstituteCanada
  2. 2.The Australian National UniversityCanberraAustralia
  3. 3.Oxford UniversityUK

Personalised recommendations