Analytic Expressions for Fiducial and Surface Target Registration Error

  • Burton Ma
  • Randy E. Ellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


We propose and test analytic equations for approximating expected fiducial and surface target registration error (TRE). The equations are derived from a spatial stiffness model of registration. The fiducial TRE equation is equivalent to one presented by [1]. We believe that the surface TRE equation is novel, and we provide evidence from computer simulations to support the accuracy of the approximation.


Target Location Mechanical Axis Target Registration Error Screw Axis Surface Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fitzpatrick, J.M., et al.: Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5), 694–702 (1998)CrossRefGoogle Scholar
  2. 2.
    Maurer Jr., C.R., et al.: Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4), 447–462 (1997)CrossRefGoogle Scholar
  3. 3.
    Evans, A.C., et al.: Image registration based on discrete anatomic structures. In: Maciunas, R.J. (ed.) Interactive Image-Guided Neurosurgery, pp. 63–80. American Association of Neurological Surgeons, Park Ridge (1993)Google Scholar
  4. 4.
    Hill, D.L.G., et al.: Accuracte frameless registration of MR and CT images of a head: Applications in surgery and radiotherapy planning. Radiology 191, 447–454 (1994)Google Scholar
  5. 5.
    Ellis, R.E., et al.: A method for evaluating CT-based surgical registration. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 141–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Ma, B., Ellis, R.E.: Spatial-stiffness analysis of surface-based registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 623–630. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lin, Q., et al.: A stiffness-based quality measure for compliant grasps and fixtures. IEEE Trans Robot Automat 16(6), 675–688 (2000)CrossRefGoogle Scholar
  8. 8.
    Ma, B., Ellis, R.E.: A spatial-stiffness analysis of fiducial registration accuracy. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 359–366. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Meriam, J.L., Kraige, L.G.: Engineering Mechanics: Dynamics. John Wiley and Sons, Chichester (1986)Google Scholar
  10. 10.
    Ma, B.: A Unified Approach to Surface-Based Registration for Image-Guided Surgery. PhD thesis, Queen’s University, Kingston, Ontario, Canada (2005)Google Scholar
  11. 11.
    Ross, S.M.: Introduction to Probability Models, 7th edn. Academic Press, London (2000)MATHGoogle Scholar
  12. 12.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans Pattern Anal 14(2), 239–256 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Burton Ma
    • 1
  • Randy E. Ellis
    • 2
  1. 1.Human Mobility Research CentreQueen’s UniversityCanada
  2. 2.Dept. of RadiologyBrigham & Women’s HospitalUSA

Personalised recommendations