Advertisement

Affine Registration of Diffusion Tensor MR Images

  • Mika Pollari
  • Tuomas Neuvonen
  • Jyrki Lötjönen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a T 2-weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.

Keywords

Fractional Anisotropy Registration Method Normalize Mutual Information Registration Accuracy Brain Voxels 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Kubicki, M., Westin, C.-F., Maier, S.E., Mamata, H., Frumin, M., Ersner-Hershfield, H., Kikinis, R., Jolesz, F.A., McCarley, R., Shenton, M.E.: Diffusion Tensor Imaging and Its Application to Neuropsychiatric Disorders. Harvard Rev Psychiatry 10, 324–336 (2002)CrossRefGoogle Scholar
  3. 3.
    Basser, P., Pierpaoli, C.: Microstructural and Physiological Features of Tissue Elucidated by Quantitative-Diffusion-Tensor MRI. Journal of Magnetic Resonance, Series B 111, 209–219 (1996)CrossRefGoogle Scholar
  4. 4.
    Guimond, A., Guttmann, C.R.G., Warfield, S.K., Westin, C.F.: Deformable registration of DT-MRI data based on transformation invariant tensor characteristics. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI 2002), Washington (2002)Google Scholar
  5. 5.
    Park, H., et al.: Spatial normalization of diffusion tensor MRI using multiple channels. NeuroImage 20, 1995–2009 (2003)CrossRefGoogle Scholar
  6. 6.
    Leemans, A., Sijbers, J., Backer, S., Vandervliet, E., Parizel, P.: Affine Coregistration of Diffusion Tensor Magnetic Resonance Images Using Mutual Information. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 523–530. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Rohde, G.K., Pajevic, S., Pierpaoli, C.: Multi-channel registration of diffusion tensor images using directional information. In: ISBI, pp. 712–715. IEEE (2004)Google Scholar
  8. 8.
    Alexander, D.C., Gee, J.C.: Elastic Matching of Diffusion Tensor Images. Computer Vision and Image Understanding 77, 233–250 (2000)CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Yushkevich, P.A., Gee, J.C.: Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 172–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Ruiz-Alzola, J., Westin, C.F., Warfield, S., Alberola, C., Maier, S., Kikinis, R.: Nonrigid registration of 3D tensor data. Medical Image Analysis 6, 143–161 (2002)CrossRefGoogle Scholar
  11. 11.
    Papadakis, N.G., Xing, D., Huang, C.L.H., Hall, L.D., Carpenter, T.A.: A Comparative Study of Acquisition Schemes for Diffusion Tensor Imaging Using MRI. Journal of Magnetic Resonance 137, 67–82 (1999)CrossRefGoogle Scholar
  12. 12.
    Alexander, D., Pierpaoli, C., Gee, P.B.J.: Spatial transformations of diffusion tensor images. IEEE Transactions on Medical Imaging 20, 1131–1139 (2001)CrossRefGoogle Scholar
  13. 13.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple computations on tensors with Log-Euclidian metrics. Research Raport 5584, INRIA (2005)Google Scholar
  14. 14.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  15. 15.
    Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization of diffusion tensor MRI. Medical Image Analysis 6, 93–108 (2002)CrossRefGoogle Scholar
  16. 16.
    Studholme, C., Hill, D.L., Hawkes, D.J.: An overlap invariant entropy mesure of 3D medical image aligment. Pattern Recognition 32, 71–86 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mika Pollari
    • 1
  • Tuomas Neuvonen
    • 2
    • 4
  • Jyrki Lötjönen
    • 3
  1. 1.Laboratory of Biomedical EngineeringHelsinki University of TechnologyHUTFinland
  2. 2.Department of Clinical NeurophysiologyHelsinki University Central HospitalHUSFinland
  3. 3.VTT Information TechnologyTampereFinland
  4. 4.Neuroscience Unit, Dept. of Physiology, Inst. of BiomedicineUniversity of Helsinki 

Personalised recommendations