Registering Histological and MR Images of Prostate for Image-Based Cancer Detection

  • Yiqiang Zhan
  • Michael Feldman
  • John Tomaszeweski
  • Christos Davatzikos
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


This paper presents a deformable registration method to co-register histological images with MR images of the same prostate. By considering various distortion and cutting artifacts in histological images and also fundamentally different nature of histological and MR images, our registration method is thus guided by two types of landmark points that can be reliably detected in both histological and MR images, i.e., prostate boundary points, and internal salient points that can be identified by a scale-space analysis method. The similarity between these automatically detected landmarks in histological and MR images are defined by geometric features and normalized mutual information, respectively. By optimizing a function, which integrates the similarities between landmarks with spatial constraints, the correspondences between the landmarks as well as the deformable transformation between histological and MR images can be simultaneously obtained. The performance of our proposed registration algorithm has been evaluated by various designed experiments. This work is part of a larger effort to develop statistical atlases of prostate cancer using both imaging and histological information, and to use these atlases for optimal biopsy and therapy planning.


Mutual Information Cancerous Region Registration Method Normalize Mutual Information Histological Image 


  1. 1.
    Shen, D., Lao, Z., Zeng, J., Zhang, W., Sesterhenn, I.A., Sun, L., Moul, J.W., Herskovits, E.H., Fichtinger, G., Davatzikos, C.: Optimization of Biopsy Strategy by A Statistical Atlas of Prostate Cancer Distribution. Medical Image Analysis 8, 139–150 (2004)CrossRefGoogle Scholar
  2. 2.
    Zhan, Y., Shen, D.: Deformable Segmentation of 3-D Ultrasound Prostate Images Using Statistical Texture Matching Method. IEEE Trans. on Medical Imaging 25, 245–255 (2006)CrossRefGoogle Scholar
  3. 3.
    Madabhushi, A., Feldman, M., Metaxas, D.N., Chute, D., Tomaszewski, J.: A Novel Stochastic Combination of 3D Texture Features for Automated Segmentation of Prostatic Adenocarcinoma from High Resolution MRI. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chan, I., Wells 3rd, W., Mulkern, R.V., Haker, S., Zhang, J., Zou, K.H., Maier, S.E., Tempany, C.M.: Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med. Phys. 30, 2390–2398 (2003)CrossRefGoogle Scholar
  5. 5.
    Taylor, L., Porter, B., Nadasdy, G., di Sant’Agnese, P., Pasternack, D., Wu, Z., Baggs, R., Rubens, D., Parker, K.: Three-dimensional registration of prostate images from histological and ultrasound. Ultrasound Med. Biol. 30, 161–168 (2004)CrossRefGoogle Scholar
  6. 6.
    Jacobs, M., Windham, J., Soltanian-Zadeh, H., Peck, D., Knight, R.: Registration and warping of magnetic resonance images to histological sections. Medical Physics 26, 1568–1578 (1999)CrossRefGoogle Scholar
  7. 7.
    Schormann, T., Zilles, K.: Three-dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data. Human Brain Mapping 6, 339–347 (1998)CrossRefGoogle Scholar
  8. 8.
    d’Aische, A.d.B., Craene, M.D., Geets, X., Gregoire, V., Macq, B., Warfield, S.K.: Efficient multi-modal dense field non-rigid registration: alignment of histological and section images. Medical Image Analysis 9, 538–546 (2004)CrossRefGoogle Scholar
  9. 9.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 114–141 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Shen, D., Herskovits, E., Davatzikos, C.: An adaptive focus statistical shape model for segmentation and shape modeling of 3D brain structures. IEEE Trans. on Medical Imaging 20, 257–271 (2001)CrossRefGoogle Scholar
  11. 11.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 77–116 (1998)Google Scholar
  12. 12.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  13. 13.
    Jenkinson, M., Smith, S.M.: A global optimization method for robust affine registration of brain images. Medical Image Analysis 5(2), 143–156 (2001)CrossRefGoogle Scholar
  14. 14.
    Davatzikos, C., Abraham, F., Biros, G., Verma, R.: Correspondence Detection in Diffusion Tensor Images. In: ISBI 2006 (April 2006)Google Scholar
  15. 15.
    Andronache, A., Cattin, P., Székely, G.: Adaptive Subdivision for Hierarchical Non-rigid Registration of Multi-modal Images Using Mutual Information. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yiqiang Zhan
    • 1
    • 3
  • Michael Feldman
    • 2
  • John Tomaszeweski
    • 2
  • Christos Davatzikos
    • 1
  • Dinggang Shen
    • 1
  1. 1.Sect. of Biomedical Image AnalysisUniversity of PennsylvaniaPhiladelphia
  2. 2.Dept. of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphia
  3. 3.Dept. of Computer ScienceJohns Hopkins UniversityBaltimore

Personalised recommendations