Advertisement

Predicting the Effects of Deep Brain Stimulation with Diffusion Tensor Based Electric Field Models

  • Christopher R. Butson
  • Scott E. Cooper
  • Jaimie M. Henderson
  • Cameron C. McIntyre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

Deep brain stimulation (DBS) is an established therapy for the treatment of movement disorders, and has shown promising results for the treatment of a wide range of other neurological disorders. However, little is known about the mechanism of action of DBS or the volume of brain tissue affected by stimulation. We have developed methods that use anatomical and diffusion tensor MRI (DTI) data to predict the volume of tissue activated (VTA) during DBS. We co-register the imaging data with detailed finite element models of the brain and stimulating electrode to enable anatomically and electrically accurate predictions of the spread of stimulation. One critical component of the model is the DTI tensor field that is used to represent the 3-dimensionally anisotropic and inhomogeneous tissue conductivity. With this system we are able to fuse structural and functional information to study a relevant clinical problem: DBS of the subthalamic nucleus for the treatment of Parkinson’s disease (PD). Our results show that inclusion of the tensor field in our model caused significant differences in the size and shape of the VTA when compared to a homogeneous, isotropic tissue volume. The magnitude of these differences was proportional to the stimulation voltage. Our model predictions are validated by comparing spread of predicted activation to observed effects of oculomotor nerve stimulation in a PD patient. In turn, the 3D tissue electrical properties of the brain play an important role in regulating the spread of neural activation generated by DBS.

Keywords

Deep Brain Stimulation Essential Tremor Subthalamic Nucleus Oculomotor Nerve Implantable Pulse Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benabid, A.L., Pollak, P., Louveau, A., Henry, S., de Rougemont, J.: Combined (thalamotomy and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral parkinson disease. Appl Neurophysiol 50, 344–346 (1987)Google Scholar
  2. 2.
    Benabid, A., Pollak, P., Gervason, C., Hoffmann, D., Gao, D., Hommel, M., Perret, J., de Rougemont, J.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403–406 (1991) (reprint status: in file)Google Scholar
  3. 3.
    Gross, R.E., Lozano, A.M.: Advances in neurostimulation for movement disorders. Neurol Res 22, 247–258 (2000)Google Scholar
  4. 4.
    Benabid, A.L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., Payen, I., Benazzouz, A.: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84, 203–214 (1996)CrossRefGoogle Scholar
  5. 5.
    Kumar, R., Lang, A.E., Rodriguez-Oroz, M.C., Lozano, A.M., Limousin, P., Pollak, P., Benabid, A.L., Guridi, J., Ramos, E., van der Linden, C., Vandewalle, A., Caemaert, J., Lannoo, E., van den Abbeele, D., Vingerhoets, G., Wolters, M., Obeso, J.A.: Deep brain stimulation of the globus pallidus pars interna in advanced parkinson’s disease. Neurology 55, S34–39 (2000)Google Scholar
  6. 6.
    McIntyre, C.C., Savasta, M., Kerkerian-Le Goff, L., Vitek, J.L.: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115, 1239–1248 (2004)CrossRefGoogle Scholar
  7. 7.
    Obeso, J., Olanow, C., Rodriguez-Oroz, M., Krack, P., Kumar, R., Lang, A.: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in parkinson’s disease. N Engl J Med 345, 956–963 (2001)CrossRefGoogle Scholar
  8. 8.
    Butson, C., McIntyre, C.C.: Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng 3, 1–8 (2006)CrossRefGoogle Scholar
  9. 9.
    Butson, C.R., McIntyre, C.C.: Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116, 2490–2500 (2005)CrossRefGoogle Scholar
  10. 10.
    Butson, C.R., Maks, C.B., McIntyre, C.C.: Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 117, 447–454 (2006)CrossRefGoogle Scholar
  11. 11.
    McIntyre, C.C., Mori, S., Sherman, D.L., Thakor, N.V., Vitek, J.L.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115, 589–595 (2004)CrossRefGoogle Scholar
  12. 12.
    Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S., Belliveau, J.W.: Conductivity tensor mapping of the human brain using diffusion tensor mri. Proc Natl Acad Sci U S A 98, 11697–11701 (2001)CrossRefGoogle Scholar
  13. 13.
    Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Trans Med Imaging 16, 864–877, 0278-0062 (Print) Journal Article (1997)Google Scholar
  14. 14.
    Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87, 0033-8419 Journal Article (2004)Google Scholar
  15. 15.
    Haueisen, J., Tuch, D.S., Ramon, C., Schimpf, P.H., Wedeen, V.J., George, J.S., Belliveau, J.W.: The influence of brain tissue anisotropy on human eeg and meg. Neuroimage 15, 159–166 (2002)CrossRefGoogle Scholar
  16. 16.
    Butson, C., Hall, J., Henderson, J., McIntyre, C.: Patient-specific models of deep brain stimulation: 3d visualization of anatomy, electrode and volume of activation as a function of the stimulation parameters. In: Society for Neuroscience, vol. 30, 1011.11 (2004)Google Scholar
  17. 17.
    McIntyre, C.C., Richardson, A.G., Grill, W.M.: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87, 995–1006 (2002)Google Scholar
  18. 18.
    BioPSE: Scientific Computing and Imaging Institute (SCI) (2002), http://software.sci.utah.edu/biopse.html
  19. 19.
    Haines, D.E.: Neuroanatomy: an atlas of structures, sections, and systems, 5th edn. Lippincott Williams & Wilkins, Philadelphia (2000)Google Scholar
  20. 20.
    Butson, C., Maks, C., Cooper, S.E., Henderson, J.M., McIntyre, C.C.: Deep brain stimulation interactive visualization system. In: Society for Neuroscience, Washington, DC, vol. 898.7 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christopher R. Butson
    • 1
  • Scott E. Cooper
    • 2
  • Jaimie M. Henderson
    • 3
  • Cameron C. McIntyre
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCleveland Clinic FoundationCleveland
  2. 2.Center for Neurological RestorationCleveland Clinic FoundationCleveland
  3. 3.Department of NeurosurgeryStanford School of MedicineStanford

Personalised recommendations