Assessment of Airway Remodeling in Asthma: Volumetric Versus Surface Quantification Approaches

  • Amaury Saragaglia
  • Catalin Fetita
  • Françoise Prêteux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


This paper develops a volumetric quantification approach of the airway wall in multi-detector computed tomography (MDCT), exploiting a 3D segmentation methodology based on patient-specific deformable mesh model. A comparative study carried out with respect to a reference 2D/3D surface quantification technique underlines the clinical interest of the proposed approach in assessing airway remodeling in asthmatics and in evaluating the efficiency of therapeutic protocols.


Medial Axis Airway Remodel Lumen Area Airway Wall Wall Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matsuoka, S., Kurihara, Y., Nakajima, Y., Niimi, H., Ashida, H., Kaneoya, K.: Serial Change in Airway Lumen and Wall Thickness at Thin-Section CT in Asymptomatic Subjects. Radiology 234(2), 595–603 (2005)CrossRefGoogle Scholar
  2. 2.
    Chabat, F., Hu, X.P., Hansell, D.M., Yang, G.Z.: ERS transform for the automated detection of bronchial abnormalities on CT of the lungs. IEEE transactions on medical imaging 20 (2001)Google Scholar
  3. 3.
    King, G.G., Muller, N.L., Whittall, K.P., Xiang, Q.S., Pare, P.D.: An Analysis Algorithm for Measuring Airway Lumen and Wall Areas from High-Resolution Computed Tomographic Data. Am. J. R. Cr. Care Med. 161, 574–580 (2000)Google Scholar
  4. 4.
    Wiemker, R., Blaffert, T., Blow, T., Renisch, S., Lorenz, C.: Automated assessment of bronchial lumen, wall thickness and bronchial tree using high-resolution CT. International Congress Series, vol. 1268, pp. 967–972 (2004)Google Scholar
  5. 5.
    Hoffman, E.A., Reinhardt, J.M., Sonka, M., et al.: Characterization of the intersistal lung diseases via density based and texture-based analysis of computed tomography images of lung structure and function. Acad. Radiology 10, 1104–1118 (2003)CrossRefGoogle Scholar
  6. 6.
    Saragaglia, A., Fetita, C., Prêteux, F., Brillet, P.Y., Grenier, P.: Accurate 3D quantification of bronchial parameters in MDCT. In: Proceedings SPIE Conference on Mathematical Methods in Pattern and Image Analysis, vol. 5916, pp. 323–334 (2005)Google Scholar
  7. 7.
    Fetita, C., Prêteux, F., Beigelman-Aubry, C., Grenier, P.: Pulmonary airways: 3D reconstruction from multi-slice CT and clinical investigation. IEEE Transactions on Medical Imaging 23(11), 1353–1364 (2004)CrossRefGoogle Scholar
  8. 8.
    Perchet, D., Fetita, C., Prêteux, F.: Physiopathology of Pulmonary Airways: Automated Facilities for Accurate Assessment. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 234–242. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Brillet, P., Fetita, C., Beigelman-Aubry, C., Perchet, D., Prêteux, F., Grenier, P.: Automatic segmentation of airway wall area for quantitative assessment at MDCT: preliminary results in asthmatics. European Congress of Radiology (2005)Google Scholar
  10. 10.
    Brillet, P., Saragaglia, A., Fetita, C., Beigelman-Aubry, C., Dreuil, S., Prêteux, F., Grenier, P.: Automatic quantification of bronchi using MDCT: Comparison of FWHM and EDCE methods on computerized simulations and in vivo bronchi. European Congress of Radiology (2006)Google Scholar
  11. 11.
    Boissonnat, J.-D., Oudot, S.: Provably Good Surface Sampling and Approximation. In: Eurographics Symposium on Geometry Processing (2003)Google Scholar
  12. 12.
    Chew, L.P.: Guaranteed-Quality Mesh generation for Curved Surfaces. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., vol. 10, pp. 274–280 (1993)Google Scholar
  13. 13.
    Perchet, D.: Modelisation in-silico des voies aeriennes: reconstruction morphologique et simulation fonctionnelle. PHD Thesis, Univ. Paris (November 5, 2005)Google Scholar
  14. 14.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum 21(3), 209–218 (2002)CrossRefGoogle Scholar
  15. 15.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Computer Graphics (SIGGRAPH 1993 Proceedings), pp. 19–26 (1993)Google Scholar
  16. 16.
    Lachaud, J.-O., Taton, B.: Deformable model with adaptive mesh and automated topology changes. In: Proc. 4th Int. Conference on 3D Digital Imaging and Modeling, pp. 12–19. IEEE, Los Alamitos (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amaury Saragaglia
    • 1
  • Catalin Fetita
    • 1
  • Françoise Prêteux
    • 1
  1. 1.ARTEMIS Project UnitINT, Groupe des Ecoles des TélécommunicationsEvryFrance

Personalised recommendations