Advertisement

Using Registration Uncertainty Visualization in a User Study of a Simple Surgical Task

  • Amber L. Simpson
  • Burton Ma
  • Elvis C. S. Chen
  • Randy E. Ellis
  • A. James Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

We present a novel method to visualize registration uncertainty and a simple study to motivate the use of uncertainty visualization in computer–assisted surgery. Our visualization method resulted in a statistically significant reduction in the number of attempts required to localize a target, and a statistically significant reduction in the number of targets that our subjects failed to localize. Most notably, our work addresses the existence of uncertainty in guidance and offers a first step towards helping surgeons make informed decisions in the presence of imperfect data.

Keywords

User Study Osteoid Osteoma Neonatal Seizure Target Registration Error Uncertainty Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Laidlaw, D.H., et al.: Comparing 2D vector field visualization methods: A user study. IEEE Transactions on Visualization and Computer Graphics 11, 59–70 (2005)CrossRefGoogle Scholar
  2. 2.
    Vellido, A., Lisboa, P.J.: Handling outliers in brain tumor MRS data analysis through robust topographic mapping. Computers in Biology and Medicine (to appear, 2006)Google Scholar
  3. 3.
    Karayiannia, N.B., et al.: Quantifying and visualizing uncertainty in EEG data of neonatal seizures. In: Proc of the 26th Annual International Conference of the IEEE EMBS (2004)Google Scholar
  4. 4.
    Jones, D.K.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magnetic Resonance in Medicine 49, 7–12 (2003)CrossRefGoogle Scholar
  5. 5.
    McCormick, T., et al.: Target volume uncertainty and a method to visualize its effect on the target dose prescription. International Journal of Radiation Oncology Biology Physics 60, 1580–1588 (2004)CrossRefGoogle Scholar
  6. 6.
    Dahlin, D.C., Unni, K.: Bone Tumors: General Aspects and Data on 8,542 Cases, 4th edn. Thomas, Springfield, Ill (1986)Google Scholar
  7. 7.
    Ellis, R.E., Kerr, D., Rudan, J.F., Davidson, L.: Minimally invasive excision of deep bone tumors. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Ma, B., Ellis, R.E.: Surface-based registration with a particle filter. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 566–573. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  10. 10.
    Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Processing Letters 15, 77–87 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Volume Rendering Techniques. In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, Addison-Wesley, New York (2004)Google Scholar
  12. 12.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Tests, 3rd edn. Chapman & Hall, Boca Raton (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amber L. Simpson
    • 1
  • Burton Ma
    • 1
    • 2
  • Elvis C. S. Chen
    • 1
  • Randy E. Ellis
    • 1
    • 2
    • 3
  • A. James Stewart
    • 1
    • 2
  1. 1.School of ComputingQueen’s UniversityKingstonCanada
  2. 2.Human Mobility Research CentreKingston General HospitalKingstonCanada
  3. 3.Surgical Planning LaboratoryBrigham and Women’s HospitalBostonUSA

Personalised recommendations