Advertisement

Numerical Simulation of Radio Frequency Ablation with State Dependent Material Parameters in Three Space Dimensions

  • Tim Kröger
  • Inga Altrogge
  • Tobias Preusser
  • Philippe L. Pereira
  • Diethard Schmidt
  • Andreas Weihusen
  • Heinz-Otto Peitgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

We present a model for the numerical simulation of radio frequency (RF) ablation of tumors with mono- or bipolar probes. This model includes the electrostatic equation and a variant of the well-known bio-heat transfer equation for the distribution of the electric potential and the induced heat. The equations are nonlinearly coupled by material parameters that change with temperature, dehydration and damage of the tissue. A fixed point iteration scheme for the nonlinear model and the spatial discretization with finite elements are presented. Moreover, we incorporate the effect of evaporation of water from the cells at high temperatures using a predictor-corrector like approach. The comparison of the approach to a real ablation concludes the paper.

Keywords

Radio Frequency Radio Frequency Ablation Point Iteration Robin Boundary Condition Conjugate Gradient Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stein, T.: Untersuchungen zur Dosimetrie der hochfrequenzstrominduzierten interstitiellen Thermotherapie in bipolarer Technik. Fortschritte in der Lasermedizin, vol. 22. Müller and Berlien (2000)Google Scholar
  2. 2.
    Tungjitkusolum, S., Staelin, S.T., Haemmerich, D., et al.: Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans. Biomed. Eng. 49, 3–9 (2002)CrossRefGoogle Scholar
  3. 3.
    Welp, C., Werner, J.: Large vessel cooling in hepatic radiofrequency ablation: investigation on the influence of blood flow rate. IEEE Trans. Biomed. Eng. (submitted)Google Scholar
  4. 4.
    Deuflhard, P., Weiser, M., Seebaß, M.: A new nonlinear elliptic multilevel fem applied to regional hyperthermia. Comput. Vis. Sci. 3, 115–120 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Roggan, A.: Dosimetrie thermischer Laseranwendungen in der Medizin. Fortschritte in der Lasermedizin, vol. 16. Müller and Berlien (1997)Google Scholar
  6. 6.
    Jain, M.K., Wolf, P.D.: A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Ann. Biomed. Eng. 28, 1075–1084 (2000)CrossRefGoogle Scholar
  7. 7.
    Preusser, T., Weihusen, A., Peitgen, H.O.: On the modelling of perfusion in the simulation of RF-ablation. In: Proceedings of Simulation and Visualization (SimVis), Magdeburg (2005)Google Scholar
  8. 8.
    Jain, R.K., Grantham, F.H., Gullion, P.M.: Blood flow and heat transfer in walker 256 mammary carcinoma. J. Natl. Cancer Inst. 69, 927–931 (1979)Google Scholar
  9. 9.
    Pennes, H.H.: Analysis of tissue and arterial blood temperatures in a resting forearm. J. Appl. Physiol. 1, 93–122 (1948)Google Scholar
  10. 10.
    Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)Google Scholar
  11. 11.
    LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comp. Phys. 131, 327–353 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Schenk, A., Prause, G., Peitgen, H.O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 186–195. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tim Kröger
    • 1
  • Inga Altrogge
    • 1
  • Tobias Preusser
    • 1
  • Philippe L. Pereira
    • 2
  • Diethard Schmidt
    • 2
  • Andreas Weihusen
    • 3
  • Heinz-Otto Peitgen
    • 1
    • 3
  1. 1.CeVis – Center for Complex Systems and VisualizationUniversity of BremenGermany
  2. 2.Dept. of Diagnostic RadiologyEberhard Karls UniversityTübingenGermany
  3. 3.MeVis – Center for Medical Diagnostic Systems and VisualizationBremenGermany

Personalised recommendations