Detection of Electrophysiology Catheters in Noisy Fluoroscopy Images

  • Erik Franken
  • Peter Rongen
  • Markus van Almsick
  • Bart ter Haar Romeny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


Cardiac catheter ablation is a minimally invasive medical procedure to treat patients with heart rhythm disorders. It is useful to know the positions of the catheters and electrodes during the intervention, e.g. for the automatization of cardiac mapping. Our goal is therefore to develop a robust image analysis method that can detect the catheters in X-ray fluoroscopy images. Our method uses steerable tensor voting in combination with a catheter-specific multi-step extraction algorithm. The evaluation on clinical fluoroscopy images shows that especially the extraction of the catheter tip is successful and that the use of tensor voting accounts for a large increase in performance.


Path Graph Local Feature Image Tensor Vote Path Extraction Invasive Medical Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kynor, D.B., Dietz, A.J., Friets, E.M., Peterson, J.N., Bergstrom, U.C., Triedman, J.K., Hammer, P.E.: Visualization of cardiac wavefronts using data fusion. In: Sonka, M. (ed.) Medical imaging 2002: Image Processing. Proceedings of the SPIE, vol. 4684, pp. 1186–1194. SPIE-Int. Soc. Opt. Eng. (2002)Google Scholar
  2. 2.
    Fallavollita, P., Savard, P., Sierra, G.: Fluoroscopic navigation to guide RF catheter ablation of cardiac arrhythmias. In: 26th Annual International Conference of the Engineering in Medicine and Biology Society (2004)Google Scholar
  3. 3.
    De Buck, S., Maes, F., Ector, J., Bogaert, J., Dymarkowski, S., Heidbchel, H., Suetens, P.: An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures. IEEE Transactions on Medical Imaging 24(11), 1512–1524 (2005)CrossRefGoogle Scholar
  4. 4.
    Franken, E., van Almsick, M., Rongen, P., Florack, L., ter Haar Romeny, B.: An efficient method for tensor voting using steerable filters. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 228–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam (2000)MATHGoogle Scholar
  6. 6.
    ter Haar Romeny, B.M.: Front-end vision vision and multi-scale image analysis. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  7. 7.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung, 301–350 (1923)Google Scholar
  8. 8.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erik Franken
    • 1
  • Peter Rongen
    • 2
  • Markus van Almsick
    • 1
  • Bart ter Haar Romeny
    • 1
  1. 1.Department of Biomedical EngineeringTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Philips Medical SystemsBestThe Netherlands

Personalised recommendations