Diffusion k-tensor Estimation from Q-ball Imaging Using Discretized Principal Axes

  • Ørjan Bergmann
  • Gordon Kindlmann
  • Arvid Lundervold
  • Carl-Fredrik Westin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


A reoccurring theme in the diffusion tensor imaging literature is the per-voxel estimation of a symmetric 3 ×3 tensor describing the measured diffusion. In this work we attempt to generalize this approach by calculating 2 or 3 or up to k diffusion tensors for each voxel. We show that our procedure can more accurately describe the diffusion particularly when crossing fibers or fiber-bundles are present in the datasets.


Fractional Anisotropy Diffusion Tensor Imaging Tensor Model Binary Integer Program Single Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramnani, N., Behrens, T., Penny, W., Matthews, P.: New approaches for exploring anatomical and functional connectivity in human brain. Biological Psychiatry 56(9), 613–619 (2004)CrossRefGoogle Scholar
  2. 2.
    Sundgren, P., Dong, Q., Gomez-Hassan, D., Mukherji, S., Maly, P., Welsh, R.: Diffusion tensor imaging of the brain: Review of clinical applications. Neuroradiology 46(5), 339–350 (2004)CrossRefGoogle Scholar
  3. 3.
    Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Medical Image Analysis 6, 93–108 (2002)CrossRefGoogle Scholar
  4. 4.
    Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. PhD thesis, Massachusetts Institute of Technology (2002)Google Scholar
  5. 5.
    Jansons, K., Alexander, D.: Persistent angular structure: New insights from diffusion magnetic resonance imaging data. Inverse Problems 19, 1031–1046 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Peled, S., Westin, C.F.: Geometric extraction of two crossing tracts in DWI. In: Proceedings of 13th ISMRM (2005)Google Scholar
  7. 7.
    Tuch, D.S.: Q-ball imaging. Magnetic Resonance in Medicine 52, 1358–1371 (2004)CrossRefGoogle Scholar
  8. 8.
    Kindlmann, G.: Superquadratic tensor glyphs, School of Computing, University of Utah, USA. In: Joint Eurographics - IEEE TCVG Symposium on Visualization, The Eurographics Association 2004 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ørjan Bergmann
    • 1
    • 2
  • Gordon Kindlmann
    • 1
  • Arvid Lundervold
    • 2
  • Carl-Fredrik Westin
    • 1
  1. 1.Laboratory of Mathematics in ImagingHarvard Medical SchoolBostonUSA
  2. 2.University of BergenBergenNorway

Personalised recommendations