High-Dimensional White Matter Atlas Generation and Group Analysis

  • Lauren O’Donnell
  • Carl-Fredrik Westin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


We present a two-step process including white matter atlas generation and automatic segmentation. Our atlas generation method is based on population fiber clustering. We produce an atlas which contains high-dimensional descriptors of fiber bundles as well as anatomical label information. We use the atlas to automatically segment tractography in the white matter of novel subjects and we present quantitative results (FA measurements) in segmented white matter regions from a small population. We demonstrate reproducibility of these measurements across scans. In addition, we introduce the idea of using clustering for automatic matching of anatomical structures across hemispheres.


White Matter White Matter Tract Automatic Segmentation Uncinate Fasciculus Midsagittal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT–MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)CrossRefGoogle Scholar
  2. 2.
    Concha, L., Beaulieu, C., Gross, D.W.: Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals of Neurology 57(2), 188–196 (2004)CrossRefGoogle Scholar
  3. 3.
    Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J., Shergill, S.S., O’Sullivan, M., Golesworthy, P., McGuire, P., Horsfield, M.A., Simmons, A., Williams, S.C., Howard, R.J.: Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human Brain Mapping (2005)Google Scholar
  4. 4.
    Partridge, S.C., Mukherjee, P., Berman, J.I., Henry, R.G., Miller, S.P., Lu, Y., Glenn, O.A., Ferriero, D.M., Barkovich, A.J., Vigneron, D.B.: Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. Magnetic Resonance in Medicine 22(4), 467–474 (2005)Google Scholar
  5. 5.
    Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17, 77–79 (2002)CrossRefGoogle Scholar
  6. 6.
    Mori, S., Wakana, S., Nagae-Poetscher, L.M., van Zijl, P.C.: MRI Atlas of Human White Matter. Elsevier, Amsterdam (2005)Google Scholar
  7. 7.
    Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering Fiber Traces Using Normalized Cuts. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 368–375. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract modeling. In: EMBS, p. 426 (2004)Google Scholar
  9. 9.
    O’Donnell, L., Westin, C.F.: White Matter Tract Clustering and Correspondence in Populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 140–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: ISBI, pp. 344–347 (2004)Google Scholar
  11. 11.
    Maddah, M., Mewes, A., Haker, S., Grimson, W.E.L., Warfield, S.: Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 188–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Behrens, T., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., Thompson, A., Brady, J., Matthews, P.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience 6, 750–757 (2003)CrossRefGoogle Scholar
  13. 13.
    Parker, G.J., Wheeler-Kingshott, C.A., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE TMI 21(5), 505–512 (2002)Google Scholar
  14. 14.
    Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization of diffusion tensor MRI. Medical Image Analysis 6(2), 93–108 (2002)CrossRefGoogle Scholar
  15. 15.
    Basser, P., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 111, 209–219 (1996)CrossRefGoogle Scholar
  16. 16.
    Zollei, L., Learned-Miller, E., Grimson, W.E.L., Wells, I.W.M.: Efficient population registration of 3D data. In: ICCV 2005, Computer Vision for Biomedical Image Applications (2005)Google Scholar
  17. 17.
    Brun, A., Park, H.J., Knutsson, H., Westin, C.F.: Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 564–572. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Wang, X., Tieu, K., Grimson, E.: Learning semantic scene models by trajectory analysis. Technical report, MIT CSAIL (2006)Google Scholar
  19. 19.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905 (2000)Google Scholar
  20. 20.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. PAMI 26(2), 214–225 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lauren O’Donnell
    • 1
    • 2
  • Carl-Fredrik Westin
    • 1
    • 3
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA
  3. 3.Laboratory for Mathematics in ImagingBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations