A System for Measuring Regional Surface Folding of the Neonatal Brain from MRI

  • Claudia Rodriguez-Carranza
  • Pratik Mukherjee
  • Daniel Vigneron
  • James Barkovich
  • Colin Studholme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


This paper describes a novel approach to in-vivo measurement of brain surface folding in clinically acquired neonatal MR image data, which allows evaluation of surface curvature within subregions of the cortex. This paper addresses two aspects of this problem. Firstly: normalization of folding measures to provide area-independent evaluation of surface folding over arbitrary subregions of the cortex. Secondly: automated parcellation of the cortex at a particular developmental stage, based on an approximate spatial normalization of previously developed anatomical boundaries. The method was applied to seven premature infants (age 28-37 weeks) from which gray matter and gray-white matter interface surfaces were extracted. Experimental results show that previous folding measures are sensitive to the size of the surface of analysis, and that the area independent measures proposed here provide significant improvements. Such a system provides a tool to allow the study of structural development in the neonatal brain within specific functional subregions, which may be critical in identifying later neurological impairment.


Premature Infant Global Shape Brain Surface Cortical Gray Matter Neonatal Brain 


  1. 1.
    Batchelor, P.G., Castellano Smith, A.D., Hill, D.L.G., Hawkes, D.J., Cox, T.C.S., Dean, A.F.: Measures of folding applied to the development of the human fetal brain. IEEE Transactions on Medical Imaging 21(8), 953–965 (2002)CrossRefGoogle Scholar
  2. 2.
    Cardenas, V., Chao, L.L., Blumenfeld, R., et al.: Using automated morphometry to detect association between ERP latency and structural brain MRI in normal adults. Human Brain Mapping 25(3), 317–327 (2005)CrossRefGoogle Scholar
  3. 3.
    Cooke, R.W.I., Foulder-Hughes, L., Newsham, D., Clarke, D.: Ophtalmic impairment at 7 years of age in children born very preterm. Archives of Disease in Childhood Fetal and Neonatal Edition 89, 249–253 (2004)CrossRefGoogle Scholar
  4. 4.
    Van Essen, D.C., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. The Journal of Neuroscience 17(18), 7079–7102 (1997)Google Scholar
  5. 5.
    Hack, M., Flannery, D.J., et al.: Outcomes in young adulthood for very-low-birth weight infants. New England Journal of Medicine 346(3), 149–157 (2002)CrossRefGoogle Scholar
  6. 6.
    Hamilton, B.E., Martin, J.A., Sutton, P.D.: Births: Preliminary data for 2003. National Vital Statistics Reports 53(9) (2004)Google Scholar
  7. 7.
    Hüppi, P.S., et al.: Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatric Research 39(5), 895–901 (1996)CrossRefGoogle Scholar
  8. 8.
    Inder, T.E., et al.: Abnormal cerebral structure is present at term in premature infants. Pediatrics 115(2), 286–294 (2005)CrossRefGoogle Scholar
  9. 9.
    Inder, T.E., Wells, S.J., Mogridge, N.B., Spencer, C., Volpe, J.J.: Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. Journal of Pediatry 143, 171–179 (2003)CrossRefGoogle Scholar
  10. 10.
    Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image and Vision Computing 10(8), 557–564 (1992)CrossRefGoogle Scholar
  11. 11.
    Magnotta, V.A., Andreasen, N.C., Schultz, S.K., et al.: Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cerebral Cortex 9, 151–160 (1999)CrossRefGoogle Scholar
  12. 12.
    Rieger, B., Timmermans, F.J., van Vilet, L.J., Verbeek, P.W.: On curvature estimation of iso surfaces in 3D gray-value images and the computation of shape descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1088–1094 (2004)CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Carranza, C., Rousseau, F., Iordanova, B., Glenn, O., Vigneron, D., Barkovich, J., Studholme, C.: An iso-surface folding analysis method applied to premature neonatal brain development. In: Proc. SPIE Medical Imaging: Image Processing, vol. 6144, pp. 529–539 (2006)Google Scholar
  14. 14.
  15. 15.
    Studholme, C., Cardenas, V., et al.: Accurate template-based correction of brain MRI intensity distortion with application to dementia and aging. IEEE Transactions on Medical Imaging 23(1), 99–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Studholme, C., Cardenas, V., et al.: Deformation tensor morphometry of semantic dementia with quantitative validation. Neuroimage 21(4), 1387–1398 (2004)CrossRefGoogle Scholar
  17. 17.
    Volpe, J.J.: Neurologic outcome of prematurity. Archives of Neurology 55, 297–300 (1998)CrossRefGoogle Scholar
  18. 18.
    Zilles, K., Schlaug, G., Matelli, M., Luppino, G., et al.: The human pattern of gyrification in the cerebral cortex. Anatomy and Embriology 179, 173–179 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Claudia Rodriguez-Carranza
    • 1
  • Pratik Mukherjee
    • 2
  • Daniel Vigneron
    • 2
  • James Barkovich
    • 2
  • Colin Studholme
    • 1
    • 2
  1. 1.NCIRE/VAMCSan Francisco
  2. 2.Department of RadiologyUniversity of CaliforniaSan Francisco

Personalised recommendations