A New Cortical Surface Parcellation Model and Its Automatic Implementation

  • Cédric Clouchoux
  • Olivier Coulon
  • Jean-Luc Anton
  • Jean-François Mangin
  • Jean Régis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


In this paper, we present an original method that aims at parcellating the cortical surface in regions functionally meaningful, from individual anatomy. The parcellation is obtained using an anatomically constrained surface-based coordinate system from which we define a complete partition of the surface. The aim of our method is to exhibit a new way to describe the cortical surface organization, in both anatomical and functional terms. The method is described together with results applied to a functional somatotopy experiments.


Cortical Surface Precentral Gyrus Folding Process Central Sulcus Human Cerebral Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cachia, A., Mangin, J.-F., Rivière, D., Papadopoulos-Orfanos, D., Kherif, F., Bloch, I., Régis, J.: A generic framework for parcellation of the cortical surface into gyri using geodesic voronoi diagrams. Medical Image Analysis 7(4), 403–416 (2003)CrossRefGoogle Scholar
  2. 2.
    Clouchoux, C., Coulon, O., Riviere, D., Cachia, A., Mangin, J.-F., Regis, J.: Anatomically constrained surface parameterization for cortical localization. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 344–351. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Van Essen, D.C., Drury, H.A.: Structural and functional analyses of human cerebral cortex using a surface-based atlas. The Journal of Neuroscience 17(18), 7079–7102 (1997)Google Scholar
  4. 4.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Sgonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11–22 (2004)CrossRefGoogle Scholar
  5. 5.
    Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5, 297–318 (1995)CrossRefGoogle Scholar
  6. 6.
    Mesulam, M.-M.: Principles of Behavioral and Cognitive Neurology, 2nd edn. Oxford University Press, New York (2000)Google Scholar
  7. 7.
    Ono, M., Kubik, S., Abernathey, C.: Atlas of the cerebral sulci. Thieme Medical Publishers, Inc., New York (1990)Google Scholar
  8. 8.
    Racik, P.: Neurobiologie, neurocreationism - making new cortical maps. Science 294, 1011–1012 (2001)CrossRefGoogle Scholar
  9. 9.
    Rakic, P.: Specification of cerebral cortical areas. Science 241, 170–176 (1988)CrossRefGoogle Scholar
  10. 10.
    Régis, J., Mangin, J.F., Ochiai, T., Frouin, V., Rivière, D., Cachia, A., Tamura, M., Samson, Y.: Sulcal roots generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol. Med. Chir. 45, 1–17 (2005)CrossRefGoogle Scholar
  11. 11.
    Rivière, D., Mangin, J., Papadopoulos-Orfanos, D., Martinez, J.M., Frouin, V., Régis, J.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Medical Image Analysis 6(2), 77–92 (2002)CrossRefGoogle Scholar
  12. 12.
    Thompson, P.M., Schwartz, C., Toga, A.W.: High-resolution random mesh algorithms for creating a probabilistic 3-d surface atlas of the human brain. Neuroimage 3, 19–34 (1996)CrossRefGoogle Scholar
  13. 13.
    Todd, P.: A geometric model for the cortical folding pattern of simple folded brains. J. Theor. Biol. 97, 529–538 (1982)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Toro, R., Burnod, Y.: Geometric atlas: modeling the cortex as an organized surface. NeuroImage 20(3), 1468–1484 (2003)CrossRefGoogle Scholar
  15. 15.
    Turner, O.: Growth and development of the cerebral pattern. Man. Arch. Neurol. Psychiatry, 1–12 (1948)Google Scholar
  16. 16.
    Zilles, K., Schleicher, A., Langemann, C., Amunts, K., Morosan, P., Palomero-Gallagher, N., Schormann, T., Mohlberg, H., Brgel, U., Steinmetz, H., Schlaug, G., Roland, P.E.: Quantitative analysis of sulci in human cerebral cortex: Development, regional heterogeneity, gender difference, asymetry, intersubject variability and cortical architecture. Human Brain Mapping 5, 218–221 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cédric Clouchoux
    • 1
  • Olivier Coulon
    • 1
  • Jean-Luc Anton
    • 2
  • Jean-François Mangin
    • 3
  • Jean Régis
    • 4
  1. 1.Laboratoire LSIS, UMR 6168, CNRSMarseilleFrance
  2. 2.Centre d’IRM fonctionnelle de MarseilleMarseilleFrance
  3. 3.Equipe UNAF, SHFJ, CEA/DSVOrsayFrance
  4. 4.INSERM U751MarseilleFrance

Personalised recommendations