Retina Mosaicing Using Local Features

  • Philippe C. Cattin
  • Herbert Bay
  • Luc Van Gool
  • Gábor Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


Laser photocoagulation is a proven procedure to treat various pathologies of the retina. Challenges such as motion compensation, correct energy dosage, and avoiding incidental damage are responsible for the still low success rate. They can be overcome with improved instrumentation, such as a fully automatic laser photocoagulation system.

In this paper, we present a core image processing element of such a system, namely a novel approach for retina mosaicing. Our method relies on recent developments in region detection and feature description to automatically fuse retina images. In contrast to the state-of-the-art the proposed approach works even for retina images with no discernable vascularity. Moreover, an efficient scheme to determine the blending masks of arbitrarily overlapping images for multi-band blending is presented.


Image Pair Interest Point Laser Photocoagulation Reprojection Error Interest Point Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zimmer-Galler, I., Bressler, N., Bressler, S.: Treatment of choroidal neovascularization: updated information from recent macular photocoagulation study group reports. Int. ophthalmology clinics 35, 37–57 (1995)CrossRefGoogle Scholar
  2. 2.
    Hart, W.E., Goldbaum, M.H.: Registering retinal images using automatically selected control point pairs. In: Proc. IEEE International Conference on Image Processing (ICIP), vol. 3, pp. 576–581 (1994)Google Scholar
  3. 3.
    Becker, D.E., Can, A., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination. IEEE Trans. on Biomedical Engineering 45, 105–118 (1998)CrossRefGoogle Scholar
  4. 4.
    Can, A., Stewart, C.V., Roysam, B.: Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 286–292 (1999)Google Scholar
  5. 5.
    Tsai, C.L., Stewart, C.V., Tanenbaum, H.L., Roysam, B.: Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossover from retinal fundus images. IEEE Transactions on Information Technology in Biomedicine 8, 122–130 (2004)CrossRefGoogle Scholar
  6. 6.
    Stewart, C.V., Tsai, C.L., Roysam, B.: The dual-bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans. Med. Imaging 22, 1379–1394 (2003)CrossRefGoogle Scholar
  7. 7.
    Tsai, C.L., Majerovics, A., Stewart, C.V., Roysam, B.: Disease-oriented evaluation of dual-bootstrap retinal image registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 754–761. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)Google Scholar
  9. 9.
    Brown, M., Lowe, D.G.: Recognising panoramas. In: 10th International Conference on Computer Vision, pp. 1218–1225 (2003)Google Scholar
  10. 10.
    Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2005)Google Scholar
  11. 11.
    Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Transactions on Pattern Analysis and Machine Vision. PAMI (accepted, 2005)Google Scholar
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Diestel, R.: Graph Theory. Springer, New York (1997)MATHGoogle Scholar
  15. 15.
    Can, A., Stewart, C., Roysam, B., Tanenbaum, H.: A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Application to mosaicing the curved human retina. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 585–591 (2000)Google Scholar
  16. 16.
    Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2, 217–236 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philippe C. Cattin
    • 1
  • Herbert Bay
    • 1
  • Luc Van Gool
    • 1
  • Gábor Székely
    • 1
  1. 1.Computer Vision LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations