Advertisement

Symmetric Curvature Patterns for Colonic Polyp Detection

  • Anna Jerebko
  • Sarang Lakare
  • Pascal Cathier
  • Senthil Periaswamy
  • Luca Bogoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

A novel approach for generating a set of features derived from properties of patterns of curvature is introduced as a part of a computer aided colonic polyp detection system. The resulting sensitivity was 84% with 4.8 false positives per volume on an independent test set of 72 patients (56 polyps). When used in conjunction with other features, it allowed the detection system to reach an overall sensitivity of 94% with a false positive rate of 4.3 per volume.

Keywords

False Positive Rate Colon Wall Quadratic Discriminant Analysis Polyp Detection Spherical Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pickhardt, P.J., Choi, J.R., Hwang, I., Butler, J.A., Puckett, J.L., Hildebrand, H.A.: Computer Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults. NEJM 349(23), 2191–2200 (2003)CrossRefGoogle Scholar
  2. 2.
    Sosna, J., Morrin, M.M., Kruskal, J.B., Lavin, P.T., Rosen, M.P., Raptopoulos, V.: CT Colonography of Colorectal Polyps: A Metaanalysis. AJR 181, 1593–1598 (2003)Google Scholar
  3. 3.
    Bogoni, L., Cathier, P., Dundar, M., Jerebko, A., Lakare, S., Liang, J., Periaswamy, S., Baker, M.E., Macari, M.: Computer-aided detection (CAD) for CT Colonography: a tool to address a growing need. The British Journal of Radiology 78, 57–62 (2005)CrossRefGoogle Scholar
  4. 4.
    Yoshida, H., Nappi, J., MacEneaney, P., Rubin, D.T., Dachman, A.H.: Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics 22(4) (July 2002)Google Scholar
  5. 5.
    Thirion, J.P., Gourdon, A.: Computing the Differential Characteristics of Isointensity Surfaces. Computer Vision and Image Understanding 61(2), 190–202 (1995)CrossRefGoogle Scholar
  6. 6.
    John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: International Conference on Machine Learning (1994)Google Scholar
  7. 7.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (1990)MATHGoogle Scholar
  8. 8.
    Jerebko, A.K., Malley, J.D., Franaszek, M., Summers, R.M.: Multinetwork classification scheme for detection of colonic polyps in CT colonography data sets. Acad. Radiol. 10, 154–160 (2003)CrossRefGoogle Scholar
  9. 9.
    Jerebko, A.K., Malley, J.D., Franaszek, M., Summers, R.M.: Computer-aided polyp detection in CT colonography using an ensemble of support vector machines. In: CARS 2003, vol. 1256, pp. 1019–1024 (2003)Google Scholar
  10. 10.
    Jerebko, A.K., Lakare, S., Mang, T., Mueller, C., Salovich, D., Schima, W., Wessling, J., Bogoni, L.: Evaluation of an automatic polyp measurement tool compared with experienced observers: A comparative study. In: ECR 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anna Jerebko
    • 1
  • Sarang Lakare
    • 1
  • Pascal Cathier
    • 1
  • Senthil Periaswamy
    • 1
  • Luca Bogoni
    • 1
  1. 1.CAD groupSiemens Medical SolutionsMalvernUSA

Personalised recommendations