Performance Evaluation of Grid-Enabled Registration Algorithms Using Bronze-Standards

  • Tristan Glatard
  • Xavier Pennec
  • Johan Montagnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.


Registration Algorithm Grid Infrastructure Rigid Registration Crest Line Registration Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jannin, P., et al.: Validation of medical image processing in image-guided therapy. IEEE TMI 21(12), 1445–1449 (2002)Google Scholar
  2. 2.
    Hellier, P., et al.: Retrospective evaluation of intersubject brain registration. IEEE Trans Med Imaging 22(9), 1120–1130 (2003)CrossRefGoogle Scholar
  3. 3.
    Holden, M., et al.: Voxel similarity measures for 3D serial MR brain image registration. IEEE Trans. Med. Imaging 19(2), 94–102 (2000)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Roche, A., et al.: Rigid registration of 3D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE TMI 20(10), 1038–1049 (2001)Google Scholar
  5. 5.
    Warfield, S.K., et al.: Simultaneous truth and perf. level estimation (staple): an algorithm for the validation of image segmentation. IEEE TMI 23(7), 903–921 (2004)Google Scholar
  6. 6.
    Pennec, X., et al.: Feature-based Registration of Medical Images: Estimation and Validation of the Pose Accuracy. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1107–1114. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Pennec, X., et al.: Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. of Math. Imaging and Vision (to appear, 2006)Google Scholar
  8. 8.
    Oinn, I., et al.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics journal 17(20), 3045–3054 (2004)CrossRefGoogle Scholar
  9. 9.
    Glatard, T., et al.: Efficient services composition for grid-enabled data-intensive applications. In: Proc. of HPDC 2006, pp. 333–334 (2006)Google Scholar
  10. 10.
    Ourselin, S., et al.: Block matching: A general framework to improve robustness of rigid registration. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Pennec, X., et al.: Landmark-based registration using differential geometric features, ch. 31. In: Handbook of Medical Imaging, pp. 499–513. Acad. Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tristan Glatard
    • 1
    • 2
  • Xavier Pennec
    • 1
  • Johan Montagnat
    • 2
  1. 1.INRIA Sophia – Projet AsclepiosSophia AntipolisFrance
  2. 2.CNRS – I3S unit, RAINBOW teamSophia AntipolisFrance

Personalised recommendations