A General Framework for Image Segmentation Using Ordered Spatial Dependency

  • Mikaël Rousson
  • Chenyang Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)


The segmentation problem appears in most medical imaging applications. Many research groups are pushing toward a whole body segmentation based on atlases. With a similar objective, we propose a general framework to segment several structures. Rather than inventing yet another segmentation algorithm, we introduce inter-structure spatial dependencies to work with existing segmentation algorithms. Ranking the structures according to their dependencies, we end up with a hierarchical approach that improves each individual segmentation and provides automatic initializations. The best ordering of the structures can be learned off-line. We apply this framework to the segmentation of several structures in brain MR images.


Image Segmentation Spatial Dependency Segmentation Algorithm Active Contour Hierarchical Segmentation 


  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE T. PAMI 16(16), 641–647 (1994)Google Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE T. PAMI 23(11), 1222–1239 (2001)Google Scholar
  3. 3.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE T. IP 10(2), 266–277 (2001)MATHGoogle Scholar
  4. 4.
    Chefd’hotel, C.: Geometric Methods in Computer Vision and Image Processing: Contributions and Applications. PhD thesis, Ecole Normale Suprieure de Cachan (April 2005)Google Scholar
  5. 5.
    Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping 3, 190–208 (1995)CrossRefGoogle Scholar
  6. 6.
    Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Und. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE T. PAMI 23(6), 681–685 (2001)Google Scholar
  8. 8.
    Hartmann, S.L., Parks, M.H., Martin, P.R., Dawant, B.M.: Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: part II, validation on severely atrophied brains. IEEE T. MI 18(10), 917–926 (1999)Google Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int’l J. Comp. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  10. 10.
    Kelemen, A., Székely, G., Gerig, G.: Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE T. MI 18(10), 828–839 (1999)Google Scholar
  11. 11.
    Kikinis, R., Shenton, M.E., et al.: A digital brain atlas for surgical planning model-driven segmentation, and teaching. IEEE T Vis. Comp. Graphics 2(3), 232–240 (1996)CrossRefGoogle Scholar
  12. 12.
    Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method for fast image segmentation. In: Proc. ICCV, pp. 259–265 (2005)Google Scholar
  13. 13.
    Maddah, M., Zou, K.H., Wells, W.M., Kikinis, R., Warfield, S.K.: Automatic optimization of segmentation algorithms through simultaneous truth and performance level estimation (STAPLE). In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 274–282. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Unal, G., Slabaugh, G.: Coupled PDEs for non-rigid registration and segmentation. In: Proc. CVPR, pp. 168–175 (2005)Google Scholar
  15. 15.
    Vemuri, B., Chen, Y.: Joint image registration and segmentation. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 251–269. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE T. PAMI 13(6), 583–598 (1991)Google Scholar
  17. 17.
    Yezzi, A., Zollei, L., Kapur, T.: A variational framework for joint segmentation and registration. In: Proc. Workshop on MMBIA, pp. 44–49 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikaël Rousson
    • 1
  • Chenyang Xu
    • 1
  1. 1.Department of Imaging and VisualizationSiemens Corporate ResearchPrinceton

Personalised recommendations