Segmentation of Brain MRI in Young Children

  • Maria Murgasova
  • Leigh Dyet
  • David Edwards
  • Mary Rutherford
  • Joseph V. Hajnal
  • Daniel Rueckert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


This paper describes an automatic tissue segmentation algorithm for brain MRI of young children. Existing segmentation methods developed for the adult brain do not take into account the specific tissue properties present in the brain MRI of young children. We examine the suitability of state-of-the-art methods developed for the adult brain when applied to the segmentation of the young child brain MRI. We develop a method of creation of a population-specific atlas from young children using a single manual segmentation. The method is based on non-linear propagation of the segmentation into population and subsequent affine alignment into a reference space and averaging. Using this approach we significantly improve the performance of the popular EM segmentation algorithm on brain MRI of young children.


Grey Matter Adult Brain Manual Segmentation Tissue Class Infant Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marlow, N., Wolke, D., Bracewell, M.A., Samara, M.: The EPICure Study Group: Neurologic and developmental disability at six years of age after extremely preterm birth. Pediatrics 115(2), 286–294 (2005)CrossRefGoogle Scholar
  2. 2.
    Wilke, M., Schmithorst, V., Holland, S.: Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magnetic Resonance in Medicine 50(4), 749–757 (2003)CrossRefGoogle Scholar
  3. 3.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  4. 4.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 885–896 (1999)CrossRefGoogle Scholar
  5. 5.
    Tasdizen, T., Awate, S.P., Whitaker, R.T., Foster, N.L.: MRI tissue classification with neighborhood statistics: A nonparametric, entropy-minimizing approach. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 517–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ashburner, J.: Computational Neuroanatomy. PhD thesis, University College London (2000)Google Scholar
  7. 7.
    Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging 15(4), 429–442 (1996)CrossRefGoogle Scholar
  8. 8.
    Joshi, N., Brady, M.: A non-parametric mixture model for partial volume segmentation of MR images. In: British Machine Vision Conference (2005)Google Scholar
  9. 9.
    Ren, J., Sneller, B., Rueckert, D., Hajnal, J., Hill, D.: A comparison of tissue type labelings of direct classification and segmentation propagation techniques for MR brain images. In: Proc. of Medical Image Understanding and Analysis 2005, pp. 55–58 (2005)Google Scholar
  10. 10.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  11. 11.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  12. 12.
    Pohl, K., Wells, W., Guimond, A., Kasai, K., Shenton, M., Kikinis, R., Grimson, W., Warfield, S.: Incorporating non-rigid registration into expectation maximization algorithm to segment MR images. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 564–572. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid atlas-to-image registration by minimization of class-conditional image entropy. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 745–753. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Pohl, K.: Prior Information for Brain Parcellation. PhD thesis, Massachusetts Institute of Technology (2005)Google Scholar
  15. 15.
    Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26, 839–851 (2005)CrossRefGoogle Scholar
  16. 16.
    Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive template moderated spatially varying statistical classification. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 431–438. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Chris, A., Cocosco, A.P.Z., Evans, A.C.: A fully automatic and robust brain MRI tissue classification method. Medical Image Analysis 7, 513–527 (2003)CrossRefGoogle Scholar
  18. 18.
    Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic Segmentation of Neonatal Brain MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 10–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Sled, J.G., Zijdenbos, A.E.A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  20. 20.
    Statistical Parametric Mapping,
  21. 21.
    Expectation Maximization Segmentation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria Murgasova
    • 1
  • Leigh Dyet
    • 2
  • David Edwards
    • 2
  • Mary Rutherford
    • 2
  • Joseph V. Hajnal
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Visual Information Processing Group, Department of ComputingImperial College London 
  2. 2.Department of Imaging Sciences, Faculty of MedicineImperial College London 

Personalised recommendations