Advertisement

Intensity-Based Volumetric Registration of Contrast-Enhanced MR Breast Images

  • Yin Sun
  • Chye Hwang Yan
  • Sim-Heng Ong
  • Ek Tsoon Tan
  • Shih-Chang Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

In this paper, we propose a fast intensity-based registration algorithm for the analysis of contrast-enhanced breast MR images. Motion between pre-contrast and post-contrast images has been modeled by a combination of rigid transformation and free-form deformation. By modeling the conditional probability function to be Gaussian and considering the normalized mutual information (NMI) criterion, we create a pair of auxiliary images to speed up the registration process. The auxiliary images are registered to the actual images by optimizing the simple sum of squared difference (SSD) criterion. The overall registration is achieved by linearly combining the deformation observed in the auxiliary images. One well-known problem of non-rigid registration of contrast enhanced images is the contraction of enhanced lesion volume. We address this problem by rejecting the intensity outliers from registration. Results have shown that our method could achieve accurate registration of the data while successfully prevent the contraction of the contrast enhanced lesion volume.

Keywords

Maximum Intensity Projection Lesion Volume Subtraction Image Nonrigid Registration Rigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving non-rigid registration of mr breast images using free-form deformation with an incompressibility constraint. IEEE Trans. Med. Imaging 22(6), 730–741 (2003)CrossRefGoogle Scholar
  2. 2.
    Tanner, C., Schnabel, J.A., Chung, D., Clarkson, M.J., Rueckert, D., Hill, D.L.G., Hawkes, D.J.: Volume and shape preservation of enhancing lesions when applying non-rigid registration to a time series of contrast enhancing mr breast images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 327–337. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Transactions on Medical Imaging 18(8) (1999)Google Scholar
  4. 4.
    Maes, F., Vandermeulen, D., Suetens, P.: Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Medical Image Analysis 3(4), 373–386 (1999)CrossRefGoogle Scholar
  5. 5.
    Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration 9, 2083–2099 (2000)Google Scholar
  6. 6.
    Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1(1), 35–51 (1996)CrossRefGoogle Scholar
  7. 7.
    Rohlfing, T., Maurer Jr., C.R.: Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine 7(1), 16–25 (2003)CrossRefGoogle Scholar
  8. 8.
    Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)CrossRefGoogle Scholar
  9. 9.
    Clarenz, U., Droske, M., Rumpf, M.: Towards fast non-rigid registration. Comtemporary mathematics, Special issue on inverse problems and image analysis (2002)Google Scholar
  10. 10.
    Leventon, M.E., Grimson, W.E.L.: Multi-modal volume registration using joint intensity distributions. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1057–1066. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multimodal image registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    InsightToolkit, http://www.itk.org
  13. 13.
    Kelcz, F., Furman-Haran, E., Grobgeld, D., Degani, H.: Clinical testing of high-spatial-resolution parametric contrast-enhanced mr imaging of the breast. American Journal of Radiology (179)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yin Sun
    • 1
  • Chye Hwang Yan
    • 1
  • Sim-Heng Ong
    • 1
    • 2
  • Ek Tsoon Tan
    • 1
  • Shih-Chang Wang
    • 3
  1. 1.Department of Electrical and Computer EngineeringNational University of Singapore 
  2. 2.Division of BioengineeringNational University of Singapore 
  3. 3.Department of Diagnostic RadiologyNational University of Singapore 

Personalised recommendations