Estimation of Cardiac Hyperelastic Material Properties from MRI Tissue Tagging and Diffusion Tensor Imaging

  • Kevin F. Augenstein
  • Brett R. Cowan
  • Ian J. LeGrice
  • Alistair A. Young
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


The passive material properties of myocardium are important in the understanding of diastolic cardiac dysfunction. We determined hyperelastic myocardial material parameters in four isolated arrested pig hearts undergoing passive inflation of the left ventricle. Using geometry from MRI, recorded boundary conditions, muscle fiber architecture from diffusion tensor imaging, and deformation from tissue tagging, finite element models were constructed to solve the finite elasticity stress estimation problem. The constitutive parameters of a hyperelastic transversely isotropic material law were determined by minimizing the difference between the predicted and imaged deformation field. The optimized parameters were in a similar range as those reported by previous studies, showing increased passive stiffness in the muscle fiber direction. The average RMS error was 0.92 mm, similar to the image resolution of 0.80 mm. Optimization of hyperelastic models of myocardial mechanics can thus be performed to extract meaningful biophysical parameters from MRI data.


Diastolic Heart Failure Potassium Citrate Left Ventricle Pressure Biomechanical Engineer Image SPAMM 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mandinov, L., Eberli, F.R., Seiler, C., Hess, O.M.: Diastolic heart failure. Cardiovasc. Res. 45, 813–825 (2000)CrossRefGoogle Scholar
  2. 2.
    Hu, Z., Metaxas, D., Axel, L.: In vivo strain and stress estimation of the heart left and right ventricles from mri images. Medical Image Analysis 7, 435–444 (2003)CrossRefGoogle Scholar
  3. 3.
    Wen, H., Bennett, E., Epstein, N., Plehn, J.: Magnetic resonance imaging assessment of myocardial elastic modulus and viscosity using displacement imaging and phase-contrast velocity mapping. Magn. Reson. Med. 54, 538–548 (2005)CrossRefGoogle Scholar
  4. 4.
    Sermesant, M., Rhode, K., Sanchez-Ortiz, G., Camara, O., Andriantsimiavona, R., Hegde, S., Rueckert, D., Lambiase, P., Bucknall, C., Rosenthal, E., Delingette, H., Ayache, N., Razavi, R.: Simulation of caridac pathologies using an electromechanical biuventricular model and xmr interventional imaging. Medical Image Analysis 9, 467–480 (2005)CrossRefGoogle Scholar
  5. 5.
    Yin, F.: Ventricular wall stress. Circulation Research 49, 829–842 (1981)Google Scholar
  6. 6.
    Augenstein, K., Cowan, B., LeGrice, I., Nielsen, P., Young, A.: Method and apparatus for soft tissue material parameter estimation using magnetic resonance imaging. J. Biomech. Eng. 127, 148–157 (2005)CrossRefGoogle Scholar
  7. 7.
    Basser, P., Pierpaoli, C.: A simplified method to measure the diffusion tensor from seven mr images. Magn. Reson. Med. 39, 928–934 (1998)CrossRefGoogle Scholar
  8. 8.
    Garrido, L., Wedeen, V., Kwong, K., Spencer, U., Kantor, H.: Anisotropy of water diffusion in the myocardium of the rat. Circ. Res. 74, 789–793 (1994)Google Scholar
  9. 9.
    Young, A., Cowan, B., Thrupp, S., Hedley, W., Dell’Italia, L.: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216, 597–602 (2000)Google Scholar
  10. 10.
    Young, A., Kraitchman, D., Dougherty, L., Axel, L.: Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans. Medical Imaging 14, 413–421 (1995)CrossRefGoogle Scholar
  11. 11.
    Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME Journal of Biomechanical Engineering 113, 42–55 (1991)CrossRefGoogle Scholar
  12. 12.
    Guccione, J.M., McCulloch, A.D.: Finite element modeling of ventricular mechanics. In: Glass, L., Hunter, P., McCulloch, A.D. (eds.) Theory of Heart - Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, pp. 121–144. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Emery, J.L., Omens, J.H., McCulloch, A.D.: Strain softening in rat left ventricular myocardium. ASME Journal of Biomechanical Engineering 119, 6–12 (1997)CrossRefGoogle Scholar
  14. 14.
    Okamoto, R.J., Moulton, M.J., Peterson, S.J., Li, D., Pasque, M.K., Guccione, J.M.: Epicardial suction: A new approach to mechanical testing of the passive ventricular wall. Journal of Biomechanical Engineering 1122, 479–487 (2000)CrossRefGoogle Scholar
  15. 15.
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, New YorkGoogle Scholar
  16. 16.
    Nielsen, P.M.F., Grice, I.J., Hunter, B.H.S., Mathematical, P.J.: model of the geometry and fibrous structure of the heart. American Journal of Physiology 260, H1365–H1378 (1991)Google Scholar
  17. 17.
    Criscione, J.C., McCulloch, A.D., Hunter, W.C.: Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family. Journal of the Mechanics and Physics of Solids 50, 1681–1702 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kevin F. Augenstein
    • 1
  • Brett R. Cowan
    • 2
  • Ian J. LeGrice
    • 1
  • Alistair A. Young
    • 1
    • 2
  1. 1.Bioengineering InstituteUniversity of AucklandNew Zealand
  2. 2.Center for Advanced MRIUniversity of AucklandNew Zealand

Personalised recommendations