Atrial Septal Defect Tracking in 3D Cardiac Ultrasound

  • Marius George Linguraru
  • Nikolay V. Vasilyev
  • Pedro J. del Nido
  • Robert D. Howe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


We are working to develop beating-heart atrial septal defect (ASD) closure techniques using real-time 3-D ultrasound guidance. The major image processing challenges are the low image quality and the high frame rate. This paper presents comparative results for ASD tracking in sequences of 3D cardiac ultrasound. We introduce a block flow technique, which combines the velocity computation from optical flow for an entire block with template matching. Enforcing similarity constraints to both the previous and first frames ensures optimal and unique solutions. We compare the performance of the proposed algorithm with that of block matching and optical flow on six in-vivo 4D datasets acquired from porcine beating-heart procedures. Results show that our technique is more stable and has higher sensitivity than both optical flow and block matching in tracking ASDs. Computing velocity at the block level, our technique is much faster than optical flow and comparable in computation cost to block matching.


Optical Flow Atrial Septal Defect Tracking Algorithm Block Match Atrial Septal Defect Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barron, J.L., Fleet, D.J., Beauchemin, S.: Performance of Optical Flow Techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Boukerroui, D., Noble, J.A., Brady, M.: Velocity estimation in ultrasound images: A block matching approach. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 586–598. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, X., Xie, H., Erkamp, R., Kim, K., Jia, C., Rubin, J.M., O’Donnell, M.: 3-D Correlation-based Speckle Tracking. Ultrasonic Imaging 27(1), 21–36 (2005)Google Scholar
  4. 4.
    Cohen, B., Dinstein, I.: New Maximum Likelihood Motion Estimation Schemes for Noisy Ultrasound Images. Pattern Recognition 35, 455–463 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Duan, Q., Angelini, E.D., Herz, S.L., Ingrassia, C.M., Gerard, O., Costa, K.D., Holmes, J.W., Laine, A.F.: Evaluation of Optical Flow Algorithms for Tracking Endocardial Surfaces on Three-dimensional Ultrasound Data. In: SPIE International Symposium, Medical Imaging, vol. 5750 (2005)Google Scholar
  6. 6.
    Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)CrossRefGoogle Scholar
  7. 7.
    Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proc. Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  8. 8.
    Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Paragios, N.: A Level Set Approach for Shape-driven Segmentation and Tracking of the Left Ventricle. IEEE Trans. Med. Imaging 22(6), 773–786 (2003)CrossRefGoogle Scholar
  10. 10.
    Roche, A., Malandain, G., Ayache, N.: Unifying Maximum Likelihood Approaches in Medical Image Registration. International Journal of Imaging Systems and Technology: Special issue on 3D imaging 11, 71–80 (2000)CrossRefGoogle Scholar
  11. 11.
    Singh, A., Allen, P.: Image-flow Computation: an Estimation-theoretic Framework and a Unified Perspective. CVGIP: Image Understanding 65(2), 152–177 (1992)CrossRefGoogle Scholar
  12. 12.
    Suematsu, Y., Marx, G.R., Stoll, J.A., DuPont, P.E., Cleveland, R.O., Howe, R.D., Triedman, J.K., Mihaljevic, T., Mora, B.N., Savord, B.J., Salgo, I.S., del Nido, P.J.: Three-Dimensional Echocardiography-guided Beating-heart Surgery without Cardiopulmonary Bypass: A Feasibility Study. Journal of Thoracic and Cardiovascular Surgery 128(4), 579–587 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marius George Linguraru
    • 1
  • Nikolay V. Vasilyev
    • 2
  • Pedro J. del Nido
    • 2
  • Robert D. Howe
    • 1
  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Dept. of Cardiac Surgery, Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations