Visual Servoing for Intraoperative Positioning and Repositioning of Mobile C-arms

  • Nassir Navab
  • Stefan Wiesner
  • Selim Benhimane
  • Ekkehard Euler
  • Sandro Michael Heining
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


The problem of positioning mobile C-arms, e.g. for down the beam techniques, as well as repositioning during surgical procedures currently requires time, skill and additional radiation. This paper uses a Camera-Augmented Mobile C-arm (CAMC) to speed up the procedure, simplify its execution and reduce the necessary radiation. For positioning the C-arm in down-the-beam position, the pre-operative diagnostic CT is used for defining the axis. Additional CT visible markers on patient’s skin allow the CAMC’s optical camera to compute the C-arm’s pose and its required displacement for positioning. In the absence of electronically controlled mobile C-arms, the system provides step-by-step guidance to surgical staff until the final position is achieved. At this point, the surgeon can acquire an X-ray to ensure the correct positioning. In the case of intra-operative repositioning, no pre-operative CT is required. X-ray/Optical markers allow the visual servoing algorithm to guide the surgical staff in C-arm repositioning using CAMC’s optical camera. This work paves the path for many possible applications of visual servoing in C-arm positioning and in surgical navigation. Experiments on phantom and a cadaver study demonstrate the advantages of the new methods.


Pedicle Screw Augmented Reality Target Image Visual Servoing Forward Kinematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boszczyk, B.M., et al.: Fluoroscopic radiation exposure of the kyphoplasty patient. European Spine Journal, 347–355 (2006)Google Scholar
  2. 2.
    Synowitz, M., Kiwit, J.: Surgeon’s radiation exposure during percutaneous vertebroplasty. J. Neurosurg. Spine 4(2), 106–109 (2006)CrossRefGoogle Scholar
  3. 3.
    Rampersaud, Y.R., et al.: Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25(20), 2637–2645 (2000)CrossRefGoogle Scholar
  4. 4.
    Theocharopoulos, N., et al.: Occupational exposure from common fluoroscopic projections used in orthopaedic surgery. The Journal of Bone and Joint Surgery (American) 85, 1698–1703 (2003)Google Scholar
  5. 5.
    State, A., Chen, D.T., Tector, C., Brandt, A., Chen, H., Ohbuchi, R., Bajura, M., Fuchs, H.: Case study: observing a volume rendered fetus within a pregnant patient. In: Proceedings of the Conference on Visualization 1994, pp. 364–368. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  6. 6.
    Grimson, W., Ettinger, G., Kapur, T., Leventon, M.E., Wells, W.M., Kikinis, R.: Utilizing segmented MRI data in image guided surgery. International Journal of Pattern Recognition and Artificial Intelligence (1996)Google Scholar
  7. 7.
    Edwards, P.J., Hill, D.D., Hawkes, D.D., Colchester, D.A.: Neurosurgical guidance using the stereo microscope. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Blackwell, M., Nikou, C., Gioia, A.M.D., Kanade, T.: An image overlay system for medical data visualization (1998)Google Scholar
  9. 9.
    Sauer, F., Schoepf, U.J., Khamene, A., Vogt, S., Das, M., Silverman, S.G.: Augmented reality system for ct-guided interventions: System description and initial phantom trials. In: Medical Imaging: Visualization, Image-Guided Procedures, and Display (2003)Google Scholar
  10. 10.
    Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., Bergmann, H.: A head-mounted operating binocular for augmented reality visualization in medicine – design and initial evaluation. IEEE Transaction on Medical Imaging 21(8), 991–997 (2002)CrossRefGoogle Scholar
  11. 11.
    Navab, N., Mitschke, M., Bani-Hashemi, A.: Merging visible and invisible: Two camera-augmented mobile C-arm (CAMC) applications. In: Proc. IEEE International Workshop on Augmented Reality, San Francisco, CA, USA, pp. 134–141 (1999)Google Scholar
  12. 12.
    Stetten, G.D., et al.: C-mode real time tomographic reflection for a matrix array ultrasound sonic flashlight (2003)Google Scholar
  13. 13.
    Masamune, K., et al.: An image overlay system with enhanced reality for percutaneous therapy performed inside ct scanner (2002)Google Scholar
  14. 14.
    Leven, J., et al.: DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 811–818. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Mitschke, M., Bani-Hashemi, A., Navab, N.: Interventions under video-augmented X-ray guidance: Application to needle placement, Pittsburgh, PA, USA, pp. 858–868 (2000)Google Scholar
  16. 16.
    Heining, S., Euler, E., Wiesner, S., Navab, N.: Pedicle screw placement under video-augmented fluoroscopic control: First clinical application - a cadaver study. In: CARS 2006 - Computer Assisted Radiology and Surgery (2006)Google Scholar
  17. 17.
    Whatling, G.M., Nokes, L.D.: Literature review of current techniques for the insertion of distal screws into intramedullary locking nails. Injury (2005)Google Scholar
  18. 18.
    Hart, R.A., et al.: Pedicle screw placement in the thoracic spine: a comparison of image-guided and manual techniques in cadavers. Spine 30(12), 326–331 (2005)CrossRefGoogle Scholar
  19. 19.
    Binder, N., Matthus, L., Burgkart, R., Schweikard, A.: A robotic c-arm fluoroscope. Int. Journal on Medical Robotics and Computer Assisted Surgery 1(3), 108–116 (2005)CrossRefGoogle Scholar
  20. 20.
    Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Jour. of Applied Mechanics 22, 215–221 (1955)MATHMathSciNetGoogle Scholar
  21. 21.
    Samson, C., Le Borgne, M., Espiau, B.: Robot Control: the Task Function Approach. Oxford Engineering Science Series. Clarendon Press, Oxford (1991)Google Scholar
  22. 22.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nassir Navab
    • 1
  • Stefan Wiesner
    • 1
  • Selim Benhimane
    • 1
  • Ekkehard Euler
    • 2
  • Sandro Michael Heining
    • 2
  1. 1.Chair for Computer Aided Medical Procedures (CAMP)TU MunichGermany
  2. 2.Chirurgische Klinik und Poliklinik – InnenstadtLMU MunichGermany

Personalised recommendations