Advertisement

Combined Endo- and Exoscopic Semi-robotic Manipulator System for Image Guided Operations

  • Stefanos Serefoglou
  • Wolfgang Lauer
  • Axel Perneczky
  • Theodor Lutze
  • Klaus Radermacher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

This paper describes the development of a robotic assistance system for image guided operations. To minimize operation time, a multimodal user interface enables freehand robotic manipulation of an extracorporeal stereoscopic digital camera (exoscope) and an endoscope. The surgeon thereby wears a head-mounted unit with a binocular display, a head tracker, a microphone and earphones. Different view positioning and adjustment modes can be selected by voice and controlled by head rotation while pressing a miniature confirmation button with a finger. Initial studies focused on the evaluation and optimization of the intuitiveness, comfort and precision of different modes of operation, including a user test with neurosurgeons in a virtual reality simulation. The first labtype of the system was then implemented and demonstrated in the operating room on a phantom together with the clinical partners.

Keywords

Head Rotation Robotic Manipulator Virtual Reality Simulation Multimodal User Interface Image Guide Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cleary, K., Nguyen, C.: State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges. Computer Aided Surgery (November 2001)Google Scholar
  2. 2.
    Taylor, R.H., Stoianovici, D.: Medical Robotics in Computer-Integrated Surgery. IEEE Transactions on Robotics and Automation 19(5), 765–781 (2003)CrossRefGoogle Scholar
  3. 3.
    Detter, C., Reichenspurner, H., Boehm, D.H., Reichart, B.: Robotic manipulators in cardiac surgery: the computer-assisted surgical system ZEUS. Min. Invas. Ther. & Allied Technol. 10(6), 275–281 (2001)CrossRefGoogle Scholar
  4. 4.
    Berkelman, P., Cinquin, P., Troccaz, J., Ayoubi, J., Letoublon, C., Bouchard, F.: A compact, compliant laparoscopic endoscope manipulator. In: Proc. IEEE Int. Conf. Robotics and Automation, May 2002, pp. 1870–1875 (2002)Google Scholar
  5. 5.
    Guthart, G.S., Kenneth Salisbury, J.J.: The intuitive telesurgery system: overview and application. In: IEEE International Conference on Robotics and Automation, pp. 618–621 (2000)Google Scholar
  6. 6.
    Aiono, S., Gilbert, J.M., Soin, B., Finlay, P.A., Gordan, A.: Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy. Surg. Endosc. 16, 1267–1270 (2002)CrossRefGoogle Scholar
  7. 7.
    Buess, G.F., Arezzo, A., Schurr, M.O., Ulmer, F., Fisher, H., Gumb, L., et al.: A new remote-controlled endoscope positioning system for endoscopic solo surgery. Surg. Endosc. 14, 395–399 (2000)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Lee, Y.-J., Ko, S.-Y., Kwon, D.-S.: Compact Camera Assistant Robot for Minimally Invasive Surgery: KaLAR. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2004, pp. 2587–2592 (2004)Google Scholar
  9. 9.
    Taylor, R.H., Fundal, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., et al.: A Telerobotic Assistant for Laparoscopic Surgery. IEEE Engineering in Medicine and Biology, 279–288 (May/June, 1995)Google Scholar
  10. 10.
    Berkelman, P., Boidard, E., Cinquin, P., Troccaz, J.: Control and User Interface Design for Compact Manipulators in Minimally-Invasive Surgery. In: Proceedings of the 2005 IEEE Conference on Control Applications, August 2005, pp. 25–30 (2005)Google Scholar
  11. 11.
    Kaminsky, J., Brinker, T., Samii, A., Arango, G., Vorkapic, P., Samii, M.: Technical considerations regarding accuracy of the MKM navigation system. An experimental study on impact factors. Neurol. Res. 21, 420–424 (1999)Google Scholar
  12. 12.
    Lüth, T.C., Hein, A., Albrecht, J., Demirtas, M., Zachow, S., Heissler, E., et al.: A surgical robotic system for maxillofacial surgery. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 2470–2475 (1998)Google Scholar
  13. 13.
    Sugar, T.G., Fussell, P.: Mouth Operated Neurosurgical Robot. In: Proceedings of the ASME Design Engineering Technical Conference, September 2001 DETC01/DAC-21130 (2001)Google Scholar
  14. 14.
    Serefoglou, S., Lauer, W., Perneczky, A., Lutze, T., Radermacher, K.: Multimodal User Interface for a Semi-Robotic Visual Assistance System for Image Guided Neurosurgery. In: Lemke, H.U., et al. (eds.) Proc. CARS 2005. International Congress Series, vol. 1281, pp. 624–629 (2005)Google Scholar
  15. 15.
    Zimolong, A., Radermacher, K., Stockheim, M., Zimolong, B., Rau, G.: Reliability Analysis and Design in Computer-Assisted Surgery. In: Stephanides, C., et al. (eds.) Universal Access in HCI, pp. 524–528. Lawrence Erlbaum Ass. Publ., Mahwah (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefanos Serefoglou
    • 1
  • Wolfgang Lauer
    • 1
  • Axel Perneczky
    • 2
  • Theodor Lutze
    • 3
  • Klaus Radermacher
    • 1
  1. 1.Helmholtz Institute for Biomedical Engineering of the RWTH Aachen UniversityAachenGermany
  2. 2.Neurosurgical Department of the Johannes Gutenberg-University of MainzMainzGermany
  3. 3.Aesculap AG & CO.KGTuttlingenGermany

Personalised recommendations