C-arm Tracking and Reconstruction Without an External Tracker

  • Ameet Jain
  • Gabor Fichtinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


For quantitative C-arm fluoroscopy, we have developed a unified mathematical framework to tackle the issues of intra-operative calibration, pose estimation, correspondence and reconstruction, without the use of optical/electromagnetic trackers or precision-made fiducial fixtures. Our method uses randomly distributed unknown points in the imaging volume, either naturally present or induced by randomly sticking beads or other simple markers in the image pace. After these points are segmented, a high dimensional non-linear optimization computes all unknown parameters for calibration, C-arm pose, correspondence and reconstruction. Preliminary phantom experiments indicate an average C-arm tracking accuracy of 0.9 o and a 3D reconstruction error of 0.8 mm, with an 8 o region of convergence for both the AP and lateral axes. The method appears to be sufficiently accurate for many clinical applications, and appealing since it works without any external instrumentation and does not interfere with the workspace.


Point Cloud Point Correspondence Lateral Axis Correspondence Problem Projection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Navab, N., et al.: Dynamic geometrical calibration for 3-d cerebral angiography. In: SPIE Medical Imaging, pp. 361–370 (1996)Google Scholar
  2. 2.
    Tang, T.: Calibration and point-based registration of fluoroscope images. Master’s thesis, Queen’s University (1999)Google Scholar
  3. 3.
    Livyatan, H., Yaniv, Z., Joskowicz, L.: Robust automatic c-arm calibration for fluoroscopy-based navigation: A practical approach. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 60–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Hofstetter, R., Slomczykowski, M., Sati, M., Nolte, L.: Fluoroscopy as an imaging means for computer-assisted surgical navigation. CAS 4(2), 65–76 (1999)Google Scholar
  5. 5.
    OEC 9800 FluoroTrakTM (GE Healthcare, Waukesha, WI)Google Scholar
  6. 6.
    Jain, A., Mustufa, T., Zhou, Y., Burdette, E.C., Chirikjian, G., Fichtinger, G.: A robust fluoroscope tracking (ftrac) fiducial. Med. Phys. 32, 3185–3198 (2005)CrossRefGoogle Scholar
  7. 7.
    Ma, Y., et al.: An Invitation to 3-D Vision. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Holt, R., et al.: Uniqueness of solutions to three perspective views of four points. IEEE Trans. on PAMI 17, 303–307 (1995)Google Scholar
  9. 9.
    Jain, A., Kyon, R., Zhou, Y., Fichtinger, G.: C-arm calibration - is it really necessary? In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 639–646. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kon, R., Jain, A., Fichtinger, G.: Hidden seed reconstruction from c-arm images in brachytherapy. In: IEEE ISBI, pp. 526–529 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ameet Jain
    • 1
  • Gabor Fichtinger
    • 1
  1. 1.Department of Computer ScienceJohns Hopkins University 

Personalised recommendations