Advertisement

Towards Optimization of Probe Placement for Radio-Frequency Ablation

  • Inga Altrogge
  • Tim Kröger
  • Tobias Preusser
  • Christof Büskens
  • Philippe L. Pereira
  • Diethard Schmidt
  • Andreas Weihusen
  • Heinz-Otto Peitgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

We present a model for the optimal placement of mono- and bipolar probes in radio-frequency (RF) ablation. The model is based on a numerical computation of the probe’s electric potential and of the steady state of the heat distribution during RF ablation. The optimization is performed by minimizing a temperature based objective functional under these constraining equations. The paper discusses the discretization and implementation of the approach. Finally, applications of the optimization to artificial data and a comparison to a real RF ablation are presented.

Keywords

Radiofrequency Ablation Probe Placement Overlay Grid Uniform Cartesian Grid Placement Adapt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stein, T.: Untersuchungen zur Dosimetrie der hochfrequenzstrominduzierten interstitiellen Thermotherapie in bipolarer Technik. Fortschritte in der Lasermedizin, vol. 22. Müller and Berlien (2000)Google Scholar
  2. 2.
    Tungjitkusolum, S., Staelin, S.T., Haemmerich, D., et al.: Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans. Biomed. Eng. 49, 3–9 (2002)CrossRefGoogle Scholar
  3. 3.
    Welp, C., Werner, J.: Large vessel cooling in hepatic radiofrequency ablation: investigation on the influence of blood flow rate. IEEE Trans. Biomed. Eng. (submitted)Google Scholar
  4. 4.
    Deuflhard, P., Weiser, M., Seebaß, M.: A new nonlinear elliptic multilevel FEM applied to regional hyperthermia. Comput. Vis. Sci. 3, 115–120 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Roggan, A.: Dosimetrie thermischer Laseranwendungen in der Medizin. Fortschritte in der Lasermedizin, vol. 16. Müller and Berlien (1997)Google Scholar
  6. 6.
    Kröger, T., Altrogge, I., Preusser, T., Peitgen, H.O., et al.: Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 380–388. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Khalil-Bustany, I.S., Diederich, C.J., Polak, E., Kirjner-Neto, C.: Minmax optimization-based inverse treatment planning for interstitial thermal therapy. Int. J. Hyperthermia 14, 347–366 (1998)CrossRefGoogle Scholar
  8. 8.
    Gaenzler, T., Volkwein, S., Weiser, M.: SQP methods for parametric identification problems arising in hyperthermia. Optimization Methods and Software (2004)Google Scholar
  9. 9.
    Villard, C., Soler, L., Gangi, A.: Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics. Computer Methods in Biomechanics and Biomedical Engineering 8(4), 215–227 (2005)CrossRefGoogle Scholar
  10. 10.
    Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg (2005)Google Scholar
  11. 11.
    Geiger, C., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben. Springer, Berlin (2002)MATHGoogle Scholar
  12. 12.
    Pennes, H.H.: Analysis of tissue and arterial blood temperatures in a resting forearm. J. Appl. Physiol. 1, 93–122 (1948)Google Scholar
  13. 13.
    Braess, D.: Finite Elemente, 3rd edn. Springer, Berlin (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Inga Altrogge
    • 1
  • Tim Kröger
    • 1
  • Tobias Preusser
    • 1
  • Christof Büskens
    • 2
  • Philippe L. Pereira
    • 3
  • Diethard Schmidt
    • 3
  • Andreas Weihusen
    • 4
  • Heinz-Otto Peitgen
    • 1
    • 4
  1. 1.CeVis – Center for Complex Systems and VisualizationUniversity of BremenGermany
  2. 2.ZETEM – Center for Industrial MathematicsUniversity of BremenGermany
  3. 3.Dept. of Diagnostic RadiologyEberhard Karls UniversityTübingenGermany
  4. 4.MeVis – Center for Medical Diagnostic Systems and VisualizationBremenGermany

Personalised recommendations