Advertisement

Hybrid Navigation Interface for Orthopedic and Trauma Surgery

  • Joerg Traub
  • Philipp Stefan
  • Sandro Michael Heining
  • Tobias Sielhorst
  • Christian Riquarts
  • Ekkehard Euler
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

Several visualization methods for intraoperative navigation systems were proposed in the past. In standard slice based navigation, three dimensional imaging data is visualized on a two dimensional user interface in the surgery room. Another technology is the in-situ visualization i.e. the superimposition of imaging data directly into the view of the surgeon, spatially registered with the patient. Thus, the three dimensional information is represented on a three dimensional interface. We created a hybrid navigation interface combining an augmented reality visualization system, which is based on a stereoscopic head mounted display, with a standard two dimensional navigation interface. Using an experimental setup, trauma surgeons performed a drilling task using the standard slice based navigation system, different visualization modes of an augmented reality system, and the combination of both. The integration of a standard slice based navigation interface into an augmented reality visualization overcomes the shortcomings of both systems.

Keywords

Augmented Reality Trauma Surgeon Osteochondritis Dissecans Target Registration Error Augmented Reality System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    King, A.P., Edwards, P.J., Maurer Jr., C.R., de Cunha, D.A., Hawkes, D.J., Hill, D.L.G., Gaston, R.P., Fenlon, M.R., Strong, A.J., Chandler, C.L., Richards, A., Gleeson, M.J.: A system for microscope-assisted guided interventions. IEEE Trans. Med. Imag. 19(11), 1082–1093 (2000)CrossRefGoogle Scholar
  2. 2.
    Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., Bergmann, H.: A head-mounted operating binocular for augmented reality visualization in medicine–design and initial evaluation. IEEE Trans. Med. Imag. 21(8), 991–997 (2002)CrossRefGoogle Scholar
  3. 3.
    Sauer, F., Khamene, A., Bascle, B., Rubino, G.J.: A head-mounted display system for augmented reality image guidance: Towards clinical evaluation for imri-guided neurosurgery. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 707–716. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Wacker, F.K., Vogt, S., Khamene, A., Jesberger, J.A., Nour, S.G., Elgort, D.R., Sauer, F., Duerk, J.L., Lewin, J.S.: An augmented reality system for mr image–guided needle biopsy: Initial results in a swine model. Radiology 238(2), 497–504 (2006)CrossRefGoogle Scholar
  5. 5.
    Azar, F.S., Perrin, N., Khamene, A., Vogt, S., Sauer, F.: User performance analysis of different image-based navigation systems for needle placement procedures. In: Proc. of the SPIE, vol. 5367, pp. 110–121 (2004)Google Scholar
  6. 6.
    Sauer, F., Wenzel, F., Vogt, S., Tao, Y., Genc, Y., Bani-Hashemi, A.: Augmented workspace: designing an ar testbed. In: Proc. of IEEE and ACM ISAR, pp. 47–53 (2000)Google Scholar
  7. 7.
    Hoff, W.A., Vincent, T.L.: Analysis of head pose accuracy in augmented reality. IEEE Trans. Visualization and Computer Graphics 6 (2000)Google Scholar
  8. 8.
    Sauer, F., Schoepf, U.J., Khamene, A., Vogt, S., Das, M., Silverman, S.G.: Augmented reality system for ct-guided interventions: System description and initial phantom trials. In: Medical Imaging: Visualization, Image-Guided Procedures, and Display (2003)Google Scholar
  9. 9.
    Vogt, S., Khamene, A., Sauer, F., Niemann, H.: Single camera tracking of marker clusters: Multiparameter cluster optimization and experimental verification. In: Proc. of IEEE and ACM ISMAR, pp. 127–136 (2002)Google Scholar
  10. 10.
    Wang, M.Y., Maurer Jr., C.R., Fitzpatrick, J.M., Maciunas, R.J.: An automatic technique for finding and localizing externally attached markers in ct and mr volume images of the head. IEEE Trans. Biomed. Eng. 43(6), 627–637 (1996)CrossRefGoogle Scholar
  11. 11.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)CrossRefGoogle Scholar
  12. 12.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  13. 13.
    Fitzpatrick, J.M., West, J.B., Maurer Jr., C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imag. 14(5), 694–702 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joerg Traub
    • 1
  • Philipp Stefan
    • 1
  • Sandro Michael Heining
    • 2
  • Tobias Sielhorst
    • 1
  • Christian Riquarts
    • 2
  • Ekkehard Euler
    • 2
  • Nassir Navab
    • 1
  1. 1.Chair for Computer Aided Medical Procedures (CAMP)TU MunichGermany
  2. 2.Chirurgische Klinik und Poliklinik – InnenstadtLMU MunichGermany

Personalised recommendations