Extrapolating Tumor Invasion Margins for Physiologically Determined Radiotherapy Regions

  • Ender Konukoğlu
  • Olivier Clatz
  • Pierre-Yves Bondiau
  • Hervé Delingette
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


In radiotherapy, the constant margin taken around the visible tumor is a very coarse approximation of the invasion margin of cancerous cells. In this article, a new formulation to estimate the invasion margin of a tumor by extrapolating low tumor densities in magnetic resonance images (MRIs) is proposed. The current imaging techniques are able to show parts of the tumor where cancerous cells are dense enough. However, tissue parts containing small number of tumor cells are not enhanced in images. We propose a way to estimate these parts using the tumor mass visible in the image. Our formulation is based on the Fisher-Kolmogorov Equation that is been widely used to model the growth of brain tumors. As a proof of concept, we show some promising preliminary results, which demonstrate the feasibility of the approach.


Travel Wave Solution Invasion Margin Front Shape Tumor Density Tumor Cell Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Swanson, K., Alvord, E., Murray, J.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. British Journal of Cancer 86 (2002)Google Scholar
  2. 2.
    Tracqui, P., Cruywagen, G., Woodward, D., Bartoo, G., Murray, J., Alvord, E.: A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Proliferation 28(1) (1995)Google Scholar
  3. 3.
    Clatz, O., Sermesant, M., Bondiau, P., Delingette, H., Warfield, S., Malandain, G., Ayache, N.: Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE T.M.I. 24(10) (2005)Google Scholar
  4. 4.
    Jbabdi, S., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K., Pélégrini-Issac, M., Guillevin, R., Benali, H.: Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnetic Reson. in Med. 54 (2005)Google Scholar
  5. 5.
    Giese, A., Kluwe, L., Laube, B., Meissner, H., Berens, M., Westphal, M.: Migration of human glioma cells on myelin. Neurosurgery 38(4) (1996)Google Scholar
  6. 6.
    Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. Journal of Math. Biol. 46 (2003)Google Scholar
  7. 7.
    Patel, A., Gawlinski, E., Lemieux, S., Gatenby, R.: A cellular automaton model of early tumor growth and invasion. Journal of Theo. Biol. 213 (2001)Google Scholar
  8. 8.
    Murray, J.: Mathematical Biology. Springer, Heidelberg (2002)MATHGoogle Scholar
  9. 9.
    Fisher, R.: The wave of advance of advantegous genes. Ann. Eug. 7 (1937)Google Scholar
  10. 10.
    Aronson, D., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics 30 (1978)Google Scholar
  11. 11.
    Osher, S.: A level set formulation for the solution of the dirichlet problem for hamilton-jacobi equations. SIAM J. Math. Anal. 24(5) (1993)Google Scholar
  12. 12.
    Bryson, S., Levy, D.: Central schemes for multidimensional hamilton-jacobi equations. SIAM J. Sci. Comput. 25 (2003)Google Scholar
  13. 13.
    McCorquodale, P., Colella, P., Johansen, H.: A cartesian grid embedded boundary method for the heat equation in irregular domains. J. Comp. Phys. 173(2) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ender Konukoğlu
    • 1
  • Olivier Clatz
    • 1
  • Pierre-Yves Bondiau
    • 2
  • Hervé Delingette
    • 1
  • Nicholas Ayache
    • 1
  1. 1.Asclepios Research ProjectINRIASophia AntipolisFrance
  2. 2.Centre Antoine LacassagneNiceFrance

Personalised recommendations